

Mining Plus

GEDABEK ORE RESERVES

PROJECT COMPLETION DATE: September 2020
AZERBAIJAN INTERNATIONAL MINING COMPANY
ANGLO ASIAN MINING PLC

Document Control Information

Customer	Gedabek Ore Reserves	REVISION	
	No.	DATE	
	MP-8372-RR_AAZ- Gedabek_Reserves_Report_DRAFT	02	$14 / 10 / 2020$

Revision Tracking

Revision	Prepared By	Reviewed By	Issued For	Approved By	Date
01	J Battista	D Tucker	RC		$08 / 10 / 2020$
02	J Battista	D Tucker	RC		$14 / 10 / 2020$
03	J Battista	D Tucker	FV	D Tucker	$22 / 10 / 2020$
04					

Issued For: Review and Comment (RC), Information Only (IO), Implementation (IM), Final Version (FV).

Quality Control

Principal Author	J BATTISTA	Signature	Noser
		Date	22/10/20
Principal Peer Reviewer	D TUCKER	Signature	D M T T N
		Date	22/10/20
Principal Report Reviewer		Signature	
		Date	
Reviewers			
IMPORTANT INFORMATION: this document has been prepared for the exclusive use of the customer on the basis of instructions, information and data supplied by them and regards this as complete and accurate. this document and its contents are CONFIDENTIAL AND MAY NOT BE DISCLOSED, COPIED, QUOTED OR PUBLISHED UNLESS MINING PLUS PTY LTD (MP) HAS GIVEN ITS PRIOR WRITTEN CONSENT. MINING PLUS ACCEPTS NO LIABILITY FOR ANY LOSS OR DAMAGE ARISING AS A RESULT OF ANY PERSON OTHER than the named customer acting in reliance on any information, opinion or advice contained in this document. this document may not be relied upon by any person other than the client, its officers and employees. mining plus ACCEPTS NO LIABILITY FOR ANY MATTERS ARISING IF ANY RECOMMENDATIONS CONTAINED IN THIS DOCUMENT ARE NOT CARRIED OUT, OR ARE PARTIALLY CARRIED OUT, WITHOUT FURTHER ADVICE BEING OBTAINED FROM MINING PLUS UNLESS EXPLICITLY STATED OTHERWISE, THIS DOCUMENT, OR PARTS THEREOF, IS FOR THE CUSTOMER'S INTERNAL PURPOSES ONLY AND IS NOT INTENDED FOR EXTERNAL COMMUNICATION. NO PERSON (INCLUDING THE CUSTOMER) IS ENTITLED TO USE OR RELY ON THIS DOCUMENT AND ITS CONTENTS AT ANY TIME IF ANY FEES (OR REIMBURSEMENT OF EXPENSES) DUE TO MINING PLUS BY ITS CLIENT ARE OUTSTANDING. IN those circumstances, mining plus may require the return of all copies of this document.			

CONTENTS

Figures \& Tables 4
Table of Tables 4
Table of Figures 4
1 Introduction 5
1.1 Project Description 5
2 Mineral Resource Estimate 6
2.1 Description of Mineral Resource estimate 6
2.2 Site Visit 6
2.3 Study Status 6
3 Mining Factors. 8
3.1 Method and Assumptions Used 8
3.2 Mining Method 8
3.3 Geotechnical 8
3.4 Grade Control and Pre-Production Drilling 9
3.5 Mining Dilution and Recovery Factors 9
3.6 Inferred Mineral Resources 9
4 Metallurgical Factors 10
4.1 Metallurgical Processing 10
4.2 Plant Capacity 12
4.3 Metallurgical Recoveries 12
4.3.1 Recovery Factors 12
4.3.2 Deleterious Elements 13
4.4 Metallurgical Testwork. 13
5 Cut-off Parameters 15
6 Pit Optimisation, Design and Schedule 17
6.1 Mining Method 17
6.2 Mining Cost Estimate 17
6.3 Dilution and Recovery 17
6.4 Optimisation Parameters 17
6.5 Mine Design 19
6.6 Haulage 21
6.7 Surface Dumps 21
6.8 Mining Fleet 21
6.9 Production Schedule 22
7 Environmental 24
8 Infrastructure 25
9 Costs 26
9.1 Capital Costs 26
9.2 Operating Costs 26
10 Revenue Factors 28
11 Market Assessment 29
12 Economic Factors 30
12.1 Inputs to Economic Analysis 30
12.2 NPV Ranges and Sensitivity Analysis 31
13 Social / OTHER FACTORS 34
13.1 Social 34
13.2 Naturally Occurring Risks 34
13.3 Legal and Marketing Agreements 34
13.4 Governmental Agreements and Approvals 34
14 Statement of Ore Reserves 35
Appendix 1 - Pit Optimisation RESULTS 36
Abbreviations Units and Glossary 37

FIGURES \& TABLES

Table of Tables

Table 1: Gedabek Mineral Resource Estimate as at June 30, 2020 6
Table 2 Geotechnical parameters 9
Table 3 Annual Processing Throughput Maximum Capacities 12
Table 4 : Metallurgical recovery for each process by metal 13
Table 5 Process method cut-off grade ranges 15
Table 6 Ore reserves cut-off grade verification calculations 16
Table 7 Optimisation results for pit number 65 (M\&I) and Pit number 66 (MI\&I) 19
Table 8 : Schedule physicals by year 22
Table 9 Mining operating costs 26
Table 10 Processing operating costs 27
Table 11 Grade ranges for alternative processing methods 28
Table 12 Economic parameters 30
Table 13 Payability rates 31
Table 14 Sensitivity Analysis Results 32
Table 15 Gedabek Open Pit Ore Reserves 35
Table of Figures
Figure 1 Process method decision-making flowsheet 16
Figure 2 Pit-By-Pit Graph - Base Case (Measured and Indicated) pit optimisation 18
Figure 3 Pit-By-Pit Graph - Measured, Indicated and Inferred pit optimisation 18
Figure 4 Gedabek pit design, plan view - north to top 20
Figure 5 Gedabek pit design, orthogonal view looking towards the south west 21
Figure 6 Ore feed by process type and schedule year 23
Figure 7 Sensitivity Analysis - Spider Graph 33

1 INTRODUCTION

Anglo Asian Mining PLC (AAM), via its wholly-owned subsidiary Azerbaijan International Mining Company (AIMC) commissioned Mining Plus UK Ltd (Mining Plus) to provide an independent Ore Reserve Estimation for the Gedabek Open Pit. The work included estimating Ore Reserves in compliance with the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (The JORC Code).

This work represents an update of the January 2019 Ore Reserve estimates, the last disclosure on these deposits. This Ore Reserve estimate represents the unmined Mineral Resource within a final pit design derived from a pit optimisation process which takes into account cost and mining factors sourced from current site costs and unit rates from the incumbent mining contractor.

As at 30 June 2020 the total Gedabek Open Pit Ore Reserves, including current stockpiles are:

12.55 million tonnes at $0.70 \mathrm{~g} / \mathrm{t}$ Au for 284koz of gold, $0.21 \% \mathrm{Cu}$ for $\mathbf{2 6 . 0 k t}$ of copper and $4.34 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ for $1,754 \mathrm{koz}$ silver.

1.1 Project Description

The Gedabek Au-Cu-Ag Deposit is located in the Gedabek Ore District of the Lesser Caucasus mountain range in north-western Azerbaijan and is operated by Azerbaijan International Mining Company Ltd (AIMC), a wholly owned subsidiary of Anglo Asian Mining PLC. Gedabek Pit currently consists of an open pit mine, ore processing plant and other related infrastructure. The ore processing plant also processes ore from the nearby Ugur open pit and Gadir underground mines.

The topography is mountainous and the deposit is set into the side of a hill above the city of Gedabay. The climate is marked by sharp temperature contrasts between the summer and winter months with seasonal rainfall.

Mining activity at Gedabek is reported to have started as long as 2,000 years ago. The majority of the historical workings on site date from when mining was carried out by the German Siemens Bros Company in the project area from 1849 through to 1917, including underground extraction. Modern mining activities began when AIMC began construction of the open pit mine and heap leach processing facility for Au, Cu and Ag in 2008. Since then continual improvements have been made including the introduction of new processing methods and the introduction of ore flow from the satellite deposits of Ugur and Gadir.

2 MINERAL RESOURCE ESTIMATE

2.1 Description of Mineral Resource estimate

The Measured and Indicated Mineral Resources for the Gedabek deposit, as prepared by Mining Plus in September 2020, were used as the basis for Ore Reserves.

The Mineral Resource estimate for the Gedabek deposit, using either a $0.2 \mathrm{~g} / \mathrm{t}$ gold cut-off or where gold grade is below this cut-off, a 0.3% Copper cut-off, is summarised in Table 1.

Table 1: Gedabek Mineral Resource Estimate as at June 30, 20201

MINERAL RESOURCES												
$\mathrm{Au}>=0.2 \mathrm{~g} / \mathrm{t}$	Tonnage	Gold grade	Tonnage	Copper Grade	Tonnage	Silver Grade	Tonnage	Zinc Grade	Gold	Copper	Silver	Zinc
	Mt	g / t	Mt	\%	Mt	g/t	Mt	\%	koz	kt	koz	kt
Measured	15.8	0.66	15.8	0.12	15.8	2.58	15.8	0.24	335	19.0	1311	37.9
Indicated	12.0	0.56	12.0	0.12	12.0	2.31	12.0	0.16	216	14.4	891	19.2
Measured + Indicated	27.8	0.62	27.8	0.12	27.8	2.46	27.8	0.21	551	33.4	2202	57.1
Inferred	13.0	0.44	13.0	0.06	13.0	0.61	13.0	0.15	184	7.8	255	19.5
TOTAL	40.8	0.56	40.8	0.10	40.8	1.87	40.8	0.19	735	41.2	2457	76.6
$\mathrm{Au}<0.2 \mathrm{~g} / \mathrm{t}$ (cut-off grade	Tonnage	Gold grade	Tonnage	Copper Grade	Tonnage	Silver Grade	Tonnage	Zinc Grade	Gold	Copper	Silver	Zinc
$\begin{gathered} \mathrm{Cu}>0.3 \%, \mathrm{Zn}>0.3 \%, \mathrm{Ag}> \\ 11 \mathrm{~g} / \mathrm{t} \end{gathered}$	Mt	g/t	Mt	\%	Mt	g/t	Mt	\%	koz	kt	koz	kt
Measured			2.15	0.43	0.08	16.4	1.86	0.53		9.2	42	9.9
Indicated			2.13	0.34	0.28	13.9	2.03	0.51		7.2	125	10.4
Measured + Indicated			4.28	0.39	0.36	14.5	3.89	0.52		16.5	167	20.2
Inferred			2.85	0.40	0.15	19.4	7.04	0.54		11.4	94	38.0
TOTAL			7.1	0.39	0.51	15.9	10.9	0.5		27.9	261	58.2

Existing Stockpiles (all classified as Proven Ore Reserves)												
MEASURED RESOURCES	Tonnage	Gold grade	Tonnage	Copper Grade	Tonnage	Silver Grade	Tonnage	Zinc Grade	Gold	Copper	Silver	Zinc
	Mt	g / t	Mt	\%	Mt	g/t	Mt	\%	koz	kt	koz	kt
Agitated Leach	0.02	1.87	0.02	0.24	0.02	17.79			1	0	10	
Flotation	0.14	0.90	0.14	0.53	0.14	11.71			4	1	53	
Heap Leach (Crushed)	0.06	0.81	0.06	0.11	0.06	7.71			2	0	16	
Heap Leach (ROM)	0.61	0.73	0.61	0.21	0.61	10.23			14	1	201	
Sub-Total Stockpiles	0.83	0.79	0.83	0.26	0.83	10.44			21	2	279	

The Ore Reserves, including adjustment for ore loss and dilution factors, are included within the declared Mineral Resources

2.2 Site Visit

Due to travel limitations imposed following the global Coronavirus pandemic, a site visit by the Competent Person (CP) for Ore Reserves has not been possible to date.

Current and former employees of Mining Plus have visited the site on previous occasions, as recently as September 2019.

2.3 Study Status

The updated Ore Reserves estimate for the existing Gedabek operation results from a study that was completed by Mining Plus, using input data from Anglo Asian/AIMC site-based staff, and based on reports and other information prepared by previous consultants to the project.

Gedabek is an existing and currently operating mine. A mine plan that is technically achievable and economically viable has been identified, covering a remaining open pit mine life of approximately 8 years.

All material modifying factors are considered by the CP to have been accounted for in this Ore Reserves estimate.

3 MINING FACTORS

3.1 Method and Assumptions Used

Following establishment of the key Modifying Factors for Ore Reserve estimation, the Mineral Resources models which formed the basis for estimation of the Ore Reserves were used in a pit optimisation process using industry-standard optimisation software.

Modifying factors including pit slope angles, mining and logistics costs, processing costs, processing recovery factors and product selling costs input to the optimisation were provided by site staff. Mining costs are based on unit rates for the current mining contractor. Processing costs, recoveries and selling costs are based on actual figures obtained from current operations.

A pit shell was selected from the set of nested pit shells resulting from the pit optimisation process, and this shell was used as the basis for an operational final pit design.

The Ore Reserves are the Measured and Indicated resources (after allowing for loss and dilution factors) that meet the nominated cut-off grade parameters and are within the operational final pit design limits.

3.2 Mining Method

The mining method selected is open cut using conventional truck and excavator methods.
The CP considers the proposed mining method to be appropriate, given the nature of the deposit's mineralisation and the scale of the proposed operations.

3.3 Geotechnical

Pit slope angles used for the pit optimisation and design are based on a geotechnical report produced by AIMC's geotechnical consultant, CQA International Limited. These recommendations were presented in the document titled "Gedabek Mine - Pit Slope Assessment" dated $12^{\text {th }}$ September 2018.

The maximum recommended inter-ramp pit slope angle is 45 degrees containing a bench batter angle of 60 degrees (maximum). After allowing for ramps, the assumed overall pit slope angle is 43 degrees. The maximum vertical interval between berms is 20 metres in the competent waste strata which is assumed to be from the 1660 metre level and above. The maximum vertical interval between berms below the 1660 metre level (in mineralisation and ore) is 10 metres.

These bench design parameters are identical to those used in the pit design work performed in the previous (January 2019) Gedabek Ore Reserves update. The design parameters used are presented in Table 2.

Table 2 Geotechnical parameters

Face Angle	Bench Height	Berm Width	Inter-ramp Angle (deg)		
RL >1660	60	20	10	$\mathbf{4 2 . 9}$	
RL <1660	60		10	5	$\mathbf{4 2 . 9}$

Optimisation input slope angles were relaxed slightly from the inter-ramp angles presented in Table 2, so that the optimised shell is representative of the designed pit including ramps.

3.4 Grade Control and Pre-Production Drilling

Grade control immediately prior to mining is via dedicated pre-production RC drilling, sampling of blastholes and AAS XRF assaying of samples.

3.5 Mining Dilution and Recovery Factors

Mining dilution assumed for reserve estimation is 2%. Ore mining recovery factor for reserve estimation is 98%. These factors are in addition to the dilution that is already inherent within the block modelling process.

Pit and phase designs are based on a minimum mining width of 20 metres.

3.6 Inferred Mineral Resources

Inferred material was considered as waste for the purposes of pit optimisation and pit shell generation.

The total tonnage of Inferred mineral resources contained within the final pit design was approximately 318,000 tonnes which represents about 2.6% of the total ore tonnage in the pit and contains approximately 2% of contained gold, 4% of contained silver and 3% of contained copper in the pit.

Inferred Resources are excluded from Ore Reserves estimates.
The project does not rely on Inferred resources to produce a positive economic outcome

4 METALLURGICAL FACTORS

4.1 Metallurgical Processing

Ore is processed at Gedabek to produce either gold doré (an alloy of gold and silver with small amounts of impurities, mainly copper) or a copper and precious metal concentrate. Gold doré is produced by cyanide leaching. Initial processing is to leach (i.e. dissolve) the precious metal (and some copper) in a cyanide solution. This is done by various methods:

1. Heap leaching of crushed ore. Crushed ore is heaped into permeable "pads" onto which is sprayed a solution of cyanide. The solution dissolves the metals as it percolates through the ore by gravity and it is then collected by the impervious base under the pad.
2. Heap leaching of run of mine ("ROM") ore. The process is similar to heap leaching for crushed ore, except the ore is not crushed; instead it is heaped into pads as received from the mine (ROM) without further treatment or crushing. This process is used for very low-grade ores.
3. Agitation leaching. Ore is crushed and then milled in a grinding circuit. The finely ground ore is placed in stirred (agitation) tanks containing cyanide solution and the contained metal is dissolved in the solution. Depending on the composition of the ore, an option is available to process the finely ground ore through the flotation plant prior to, or after treatment by the agitation leaching plant. However, since installation of the second crusher line for the flotation plant in 2018, the two plants have been operating independently. Any coarse, free gold is separated using a centrifugal-type Knelson concentrator.

Slurries produced by the above processes with dissolved metal in solution are then transferred to a resin-in-pulp ("RIP") plant. A synthetic ion exchange resin, in the form of small spherical plastic beads designed to absorb gold selectively over copper and silver, is mixed with the leach slurry or "pulp". After separation from the pulp, the gold-loaded resin is treated with a second solution, which "strips" (i.e. desorbs) the gold, plus the small amounts of absorbed copper and silver, transferring the metals from the resin back into solution. The gold and silver dissolved in this final solution are recovered by electrolysis and are then smelted to produce the doré metal, comprising an alloy of gold and silver.

Copper and precious metal concentrates are produced by two processes, SART processing and flotation.

1. Sulphidisation, Acidification, Recycling and Thickening ("SART"). After gold absorption by resin-in-pulp processing, the cyanide solution from the heap leaching processes is transferred to the SART plant. The pH of the solution is then changed by the addition
of reagents. This precipitates the copper from the solution in the form of a finely divided copper sulphide concentrate containing silver and minor amounts of gold. The process also recovers cyanide from the solution, which is recycled back to leaching.
2. Flotation. Flotation is carried out in a separate flotation plant. Feedstock, which can be either tailings from the agitation leaching plant or freshly crushed and milled ore, is mixed with water to produce a slurry called "pulp" and other reagents are then added. This pulp is processed in flotation cells (tanks). The flotation cells are agitated and air introduced as small bubbles. The sulphide mineral particles attach to the air bubbles and float to the surface where they form a froth which is collected. This froth is then dewatered to form a mineral concentrate containing copper, gold and silver.

Therefore, there are essentially five (5) separate processing options for ore at Gedabek. These are:

- Agitation Leaching (AGL)
- Heap Leach of crushed material (HLC)
- Heap leach of run-of-mine material (HLROM)
- Flotation (FLT); and
- Sulphidisation / Acidification / Recycling / Thickening (SART), which is used on the cyanide solution from the HLROM and HLCRUSH processes, to recover copper and minor silver and gold and to regenerate cyanide solution for re-use in leaching.

The processing method selection is determined by the process decision making matrix developed by AIMC (see Figure 1).

All of the metallurgical processes (agitated leach, heap leach, flotation and SART) used at Gedabek are industry-standard, well-proven technology. The metallurgical processes are well-tested and proven to be effective, being those used for the existing operations.

The products generated are gold doré, a copper concentrate containing silver and minor gold from the SART process and a copper concentrate containing some gold, silver and zinc from the flotation process. There is a selling cost associated with each of these products which has been applied as a payability percentage.

Tails from the processes are transferred via gravity pipeline to the existing tailings management facility (TMF). The TMF has adequate capacity for the projected tails of the Gedabek deposit with the designed dam wall lifts.

4.2 Plant Capacity

The plant capacities in Table 3 have been provided by AIMC and include allowances for plant mechanical availability. For mine planning purposes, the HLROM process has been considered to have an unlimited capacity as it is instead limited by the feed of suitable ore from the pit.

Table 3 Annual Processing Throughput Maximum Capacities

Process	Units	Value	Comment
AGL	kt/year	675	Will be limited by pit production as opposed to leach pad space
HLROM	kt/year	effectively unlimited	
HLC	kt/year	639	
FLT	kt/year	621	

4.3 Metallurgical Recoveries

4.3.1 Recovery Factors

Metallurgical recovery factors for each of the four main processing methods (excluding SART) used at Gedabek are derived from historic actual plant operating data. Assumed overall processing recoveries for the different processing methods are presented in Table 4.

Table 4 : Metallurgical recovery for each process by metal

Processing Recovery	Unit	Value
Gold		
AGL	\%	75.0\%
HLC	\%	60.0\%
HLROM	\%	40.0\%
FLT	\%	60.0\%
Copper		
AGL	\%	18.0\%
HLC	\%	12.0\%
HLROM	\%	8.0\%
FLT	\%	78.0\%
Silver		
AGL	\%	28.0\%
HLC	\%	7.0\%
HLROM	\%	7.0\%
FLT	\%	60.0\%

4.3.2 Deleterious Elements

There are no deleterious elements of significance for the Agitated Leach and Heap Leach processing methods.

For the Flotation processing method, $\operatorname{Zinc}(\mathrm{Zn})$ is the main deleterious element to be considered in the concentrate. A sliding-scale Zn penalty in copper concentrate is applied, where final zinc grade in the concentrate is above a threshold grade of 3% and below 15%. The concentrate is rejected or treatment fee increased where the Zn grade in the concentrate exceeds 15%, depending on the concentrate buyer.

Zinc suppression in the flotation cells is successfully achieved by use of specific additives, and the Zn content of the concentrate sold to date has not exceeded the threshold.

Future studies may investigate the feasibility of modifying/augmenting the flotation plant to enable sequential capture of Zn into a separate concentrate for sale, but this is not included in the current facility or Ore Reserves estimate.

4.4 Metallurgical Testwork

Metallurgical testwork has historically been conducted on drill samples and bulk truck samples in the form of bottle roll testing and column leach tests for amenability to leaching in an agitation process and in a static heap process.

Additional flotation testwork is carried out using scaled down flotation cells on ore containing copper for the flotation process.

As the mine has been operating since 2008, metallurgical recoveries of the ore types are well understood, and a geometallurgical classification system has been developed for the ore types at Gedabek.

The amount of testwork is considered representative of the processing technology to be employed, and the samples tested are considered representative of the orebody as a whole.

5 CUT-OFF PARAMETERS

Factors included in the cut-off grade estimates include mining, processing and overhead costs, mining dilution and loss factors, processing plant recoveries and net payable gold, copper and silver prices.

The cut-offs used for reporting Ore Reserves are as follows:
All material having a Gold grade above $0.3 \mathrm{~g} / \mathrm{t}$ OR a Copper grade above 0.3% is considered as ore.

All other material is considered waste.
These cut-off grades are currently being used for the mining operations, and are considered by the CP to be appropriate for the operation, considering the nature of the deposit, and the associated project economics.

The reference point at which Ore Reserves are reported is at the mine gate. The mine currently produces gold/silver doré bars and a copper/gold/silver concentrate for sale.

The cut-off grades used in the Gedabek operations are based on the processing method decision matrix developed and provided by AIMC. Each process has its own cut-off which is based on the Au and Cu content of the ore parcel.

The operational $\mathrm{Au} / \mathrm{Cu}$ cut-off grades for each processing method are presented in Table 5.
Table 5 Process method cut-off grade ranges

		Cu Grade (\%)			
		$0<=\mathrm{Cu}<0.3$	$0.3<=\mathrm{Cu}<0.5$	$0.5<=\mathrm{Cu}<0.6$	$\mathrm{Cu}>0.6$
	$0<=\mathrm{Au}<0.3$	WASTE	FLT	FLT	FLT
	$0.3<=A u<1.0$	HLROM	FLT	FLT	FLT
	$1.0<=A u<1.2$	HLC	FLT	FLT	FLT
	$1.2<=\mathrm{Au}<1.4$	AGL	AGL	FLT	FLT
	$1.4<=\mathrm{Au}<2.5$	AGL	AGL	AGL	FLT
	$\mathrm{Au}>=2.5$	AGL	AGL	AGL	AGL

A decision-making flowsheet representing these cut-off ranges is presented in Figure 1.
The bottom cut-offs of $0.3 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $0.3 \% \mathrm{Cu}$ were verified to be suitable for use in the calculation of ore reserves by manually calculating the Au and Cu economic cut-off of each process. These calculations are presented in Table 6.

Figure 1 Process method decision-making flowsheet

Table 6 Ore reserves cut-off grade verification calculations

Process Method	Process Recoveries (\%)		Payability (\%)		Ore Mining			$\begin{gathered} \text { COSTP } \\ \$ / \mathrm{t} \end{gathered}$	Rec Met Value		Cut-off Grade	
	Cu	Au	Cu	Au	(\$/t)	(\$/t)	(\$/t)		$\mathrm{Cu}(\$ / \mathrm{t})$	Au (\$/g)	Cu (\%)	$\mathrm{Au}(\mathrm{g} / \mathrm{t})$
HLROM	8\%	40\%	82.0\%	99.95\%	\$1.90	-\$0.06	\$0.35	\$2.19	\$384	\$21.2	0.6\%	0.10
HLCRUSH	12\%	60\%	82.0\%	99.95\%	\$4.90	-\$0.06	\$0.35	\$5.19	\$576	\$31.8	0.9\%	0.16
AGL	18\%	75\%	82.0\%	99.95\%	\$22.00	-\$0.06	\$0.35	\$22.29	\$863	\$39.8	2.6\%	0.56
FLOT	78\%	60\%	82.0\%	90.00\%	\$11.00	-\$0.06	\$0.35	\$11.29	\$3,742	\$28.6	0.3\%	0.39

6 PIT OPTIMISATION, DESIGN AND SCHEDULE

6.1 Mining Method

The proposed Gedabek open pit is to be completed using conventional open pit mining methods (drill, blast, load and haul) by a mining contractor.

Mining rate variations have been kept suitable for a mining contractor to mobilise fleet.

6.2 Mining Cost Estimate

The mining costs were taken from rates currently in place between AAM and the on-site contractor.

6.3 Dilution and Recovery

Mining dilution and recovery of the ore zones was estimated at 2% and 98% respectively.

6.4 Optimisation Parameters

NPV Scheduler pit optimisations were run using the prices detailed in section 10.
The base-case optimisation scenario was completed considering only Measured and Indicated mineral resources. A sensitivity scenario examining the impact of the inclusion of inferred ore material was also completed.

Figure 2 and Figure 3 summarise the incremental pit shells for the two scenarios.

Figure 2 Pit-By-Pit Graph - Base Case (Measured and Indicated) pit optimisation
Pit 66 (revenue factor 66\%) is marked in green in Figure 2 as this was the shell chosen to use for ore reserves. Higher revenue factors shells than Pit 66 offer marginal improvements to NPV in exchange for increasing rock movement.

Figure 3 Pit-By-Pit Graph-Measured, Indicated and Inferred pit optimisation

PLAN
|
OPERATE

Table 7shows a comparison of the chosen design shell (M\&I Pit 66) and the equivalent first pit after the large pushback of the MI\&I scenarios which is Pit 65.

Table 7 Optimisation results for pit number 65 (M\&I) and Pit number 66 (MI\&I)

	Pit Shell Number	NPV_\$M	Revenue (\$M)	Mining Cost (\$M)	Processing Cost (\$M)	Rock (Mt)	Total Processed (Mt)	Waste (Mt)	Strip Ratio	$\begin{gathered} \text { Rec } \\ \text { Au } \\ \text { (koz) } \end{gathered}$	Rec Cu (kt)	$\begin{gathered} \text { Rec } \\ \mathrm{Ag} \\ (\mathrm{koz}) \end{gathered}$
M\&I	Pit 66 RF-66\%	73.1	372.3	99.6	121.9	47.9	14.3	33.6	2.34	164	16	492
MI\&	Pit 65 RF-65\%	75.7	429.5	111.3	145.9	53.5	17.1	36.4	2.13	182	21	537

A full listing of pit optimisation results is provided in Appendix 1.

6.5 Mine Design

The design was performed using the design parameters specified in Table 2, with 10 m wide ramps at a gradient of 1 in 10 . Where applicable pit exits were placed to tie in with the existing site road network.

Figure 4 and Figure 5 show the pit design surface alongside the existing site topography.

Figure 4 Gedabek pit design, plan view - north to top

Figure 5 Gedabek pit design, orthogonal view looking towards the south west

6.6 Haulage

Haulage costs have been accounted for within the mining and processing costs. Ore material is dumped directly on the respective ROM and rehandling is included in the processing cost.

6.7 Surface Dumps

The existing dumps on site have sufficient capacity to accept waste material from the new pit design. Likewise, the tailings storage facility has the capacity to accept the waste product from the processing of the projected ore material quantities.

6.8 Mining Fleet

The current mining fleet on site consists of contractor owned and operated 30 tonne trucks and excavators and company-owned and operated excavators. Additional mining capacity can be mobilised as required.

6.9 Production Schedule

Pushbacks and the mining schedule were generated using Datamine's NPV Scheduler software. Seven pushbacks were generated within the pit design surface, two of which were the satellite pits sitting to the north east.

The pushbacks were scheduled with care taken to allow for a future open pit/underground mining method trade-off study to be completed, in order to determine the best approach to ore extraction from the south eastern pit wall, in the area known as "Pit 6". The western satellite pits have been given enough time for grade control drilling to be conducted and haul road establishment.

The results of the schedule per schedule year are presented in Table 8.
Table 8 : Schedule physicals by year

Schedule Summary	Unit	Year1	Year2	Year3	Year4	Year5	Year6	Year7	Year8
Mined ore	M BCM	0.55	0.84	0.39	0.94	0.51	0.41	0.51	0.37
Mined ore	M tonnes	1.46	2.24	1.05	2.52	1.34	1.09	1.35	0.99
Mined waste	M BCM	0.94	0.66	1.83	1.47	2.45	2.54	2.44	0.49
Mined waste	M tonnes	2.54	1.76	4.95	3.98	6.66	6.91	6.65	1.35
Mined Au	g/t	0.44	0.58	0.82	0.68	0.72	0.54	0.98	0.99
Mined Au	K oz	20.5	41.5	27.5	54.7	31.3	18.8	42.7	31.4
Mined Ag	g / t	1.42	0.70	0.29	2.70	8.34	5.00	9.03	8.16
Mined Ag	K oz	66.8	50.5	9.9	218.1	360.1	174.8	393.2	259.6
Mined Cu	\%	0.23	0.17	0.11	0.16	0.26	0.32	0.25	0.22
Mined Cu	K tonnes	3.32	3.77	1.11	3.91	3.44	3.47	3.35	2.13
Strip ratio		1.73	0.79	4.73	1.58	4.95	6.36	4.91	1.36

Figure 6 shows the split of mined ore between the process destinations. Production of each process circuit will be controlled by ROM stockpiling to smooth the process feed.

Figure 6 Ore feed by process type and schedule year

7 ENVIRONMENTAL

A Previous ESIA (Environmental Social Impact Assessment) has been carried out by Amec Foster Wheeler (2012) and TexEkoMarkazMMC (2012) (submitted to Government authorities). The Gedabek deposit is located within the Gedabek Contract Area for which the ESIA is valid. The processing methods and tailings storage facility as assessed during the ESIA is the same as has been assumed for this reserve update.

Environmental and geotechnical consultants, CQA International Ltd of the UK (CQA), have onsite representation, and carried out both geotechnical and environmental assessments of the Gedabek mine area. Baseline environmental monitoring has been carried out on receptors downstream of the mine site.

The waste rock has a potential for acid rock drainage due to the presence of sulphide bearing mineralisation. Watercourses downstream of stockpiles are monitored on a routine basis for pH and heavy metals.

A topsoil management plan is in place, which has been reviewed by a CQA consultant deemed in accordance with the storage principles of the Ministry of Ecology and Natural Resources of the Republic of Azerbaijan and European Union (EU) guidelines.

Stockpile areas for waste rock have been identified following condemnation drilling. Waste material is also utilised for construction of infrastructure such as roads and other earthworks.

8 INFRASTRUCTURE

The infrastructure required for the open pit extraction of ore is surface haul road access, offices for geology/mining department, mining workshop, fuel storage, weighbridge and medical/HSEC facilities.

The existing infrastructure is adequate to support the existing operations. The deposit is located within the Company's contract/licence area with extraction rights according to the Azerbaijani Government contract. Ore is processed at the Company's current facilities, with ore being delivered by truck from the mine to processing via the existing haul road system.

Offices and mechanical workshop buildings are available. Power for the offices, workshop and weighbridge is provided via the existing grid system, with diesel generators as backup. Labour is readily available as the operation is in production and planned extraction rates are consistent with current capacity. G\&A and processing labour are part of the existing company compliment of staff.

Accommodation, canteen facilities and associated services requirements will continue to be serviced by the current infrastructure.

9 COSTS

9.1 Capital Costs

There is an existing mine with associated infrastructure and an operating processing facility at Gedabek. As such, there are only nominal sustaining capital costs required to maintain the ongoing operations at their current level.

9.2 Operating Costs

At Gedabek, drilling of blastholes and all truck haulage is carried out by contractors, while blasting and other mining activities are managed by AIMC. The mining operating cost estimate has been prepared on the basis of this "hybrid" owner-contractor mining arrangement. The operating costs have been provided by AIMC, and are based on the current actual costs and the mining contract rates currently in place at Gedabek. Costs outside the scope of the mining contract have been provided based on historic rates encountered at the operation.

The mining operating costs that have been assumed for pit optimisation purposes are summarised in Table 9.

Table 9 Mining operating costs

Mining Costs	Unit	Value	Comments	
Drill, Blast and load all in cost Mining Other:	\$USD/t	1.40	based on index cost (can be slightly different due to hardness of ore)	
Total G\&A	\$USD/t	0.35	Monthly fix cost of mining operation is $120 \mathrm{~K} \$$, so cost of G\&A per ton, can be vary based on production tonnage	
Haulage:				
AGL		\$USD/t	0.62	actual distance is 3.5 Km , but invoice distance is 10 km + fuel cost
HLC	\$USD/t	0.62	actual distance is 5 Km , but invoice distance is $10 \mathrm{~km}+$ fuel cost	
HLROM	\$USD/t	0.62	actual distance is 5 Km , but invoice distance is $10 \mathrm{~km}+$ fuel cost	
FLT	\$USD/t	0.62	actual distance is 3.5 Km , but invoice distance is 10 km + fuel cost	
ROMSP	\$USD/t	0.62	actual distance is 3 Km , but invoice distance is $10 \mathrm{~km}+$ fuel cost	
WASTE	\$USD/t	0.68	actual distance is 7 Km , but invoice distance is 10.6 km + fuel cost	

Assumed processing costs (including G\&A and additional ore mining costs) per process type are based on historic actuals, and are as summarised in Table 10.

Table 10 Processing operating costs

		Process Opex	G\&A	Ore Mining Opex Diff.	COSTP
Processing Costs	Unit			-0.06	22.29
AGL	\$USD/t	22.00	0.35	5.19	
HLC	\$USD/t	4.90	0.35	-0.06	2.19
HLROM	\$USD/t	1.90	0.35	-0.06	11.29
FLT	SUSD/t	11.00	0.35	-0.06	

10REVENUE FACTORS

Acceptable head grades for the different processing methods are as detailed in Table 11.

Table 11 Grade ranges for alternative processing methods

		Cu Grade (\%)			
		$0<=\mathrm{Cu}<0.3$	$0.3<=\mathrm{Cu}<0.5$	$0.5<=\mathrm{Cu}<0.6$	$\mathrm{Cu}>0.6$
	$0<=\mathrm{Au}<0.3$	WASTE	FLOT	FLOT	FLOT
$\stackrel{\square}{\square}$	$0.3<=A u<1.0$	HLROM	FLOT	FLOT	FLOT
¢	$1.0<=\mathrm{Au}<1.2$	HLCRUSH	FLOT	FLOT	FLOT
D	$1.2<=A u<1.4$	AGL	AGL	FLOT	FLOT
$\stackrel{\infty}{ \pm}$	$1.4<=\mathrm{Au}<2.5$	AGL	AGL	AGL	FLOT
	Au $>=2.5$	AGL	AGL	AGL	AGL

Revenue is based on a base-case gold price of US $\$ 1650$ per troy ounce, a Copper price of US\$5850 per tonne and a silver price of US\$16 per troy ounce.

These are considered by both AIMC and the Competent Person to be reasonable long-term average prices for the purposes of Ore Reserves estimates.

11 MARKET ASSESSMENT

The market for gold, copper and silver is well established. The metal price is fixed externally to AIMC; however, the Company has reviewed a number of metal forecast documents from reputable analysts and is comfortable with the market supply and demand situation.

A specific study relating to customer and competitor analysis has not been completed as part of this project. Gold and silver metal and copper concentrates are openly traded via transparent open-market systems and marketing of these products is generally straightforward.

Price and volume forecasts have been studied in reports from reputable analysts, based on metal supply and demand, US\$ forecasts and global economics.

12 ECONOMIC FACTORS

12.1 Inputs to Economic Analysis

Inputs to economic models are as provided in the above sections.
Sensitivity analysis has been used at a range of gold, copper and silver prices. The pit optimisation work shows that the pit shell NPV is insensitive to metal prices and costs beyond a revenue factor (RF) of 0.65 (i.e. 65% of the base case Au, Cu and Ag prices). The pit shell having a RF of 0.65 was therefore used as a basis for operational pit design. The LOM revenue stream is then based on recovered metal (Au, Cu and Ag) within the designed pit, according to the derived Life-of Mine schedule, and using the base case metal prices.

Economic parameters used in this study were agreed with AIMC. The economic parameters used are presented in Table 12.

Table 12 Economic parameters

Revenue	Unit	Value	Comments
Exchange rate	USD:AZN	1.7	Presented in payability table
Gold Price	\$USD/oz.	1650	
Copper Price	\$USD/t	5850	
Silver Price	\$USD/oz.	16	
Selling Costs			
Annual Discount Rate	\%/Annum	10\%	

The payability percentage of metal sold is variable based on the processing method used to extract it. A summary of payability rates by process method are presented in Table 13.

Table 13 Payability rates

Payability	Unit	Value
Au		
AGL	\%	99.95\%
HLC	\%	99.95\%
HLROM	\%	99.95\%
FLT	\%	90.00\%
Cu		
AGL	\%	82.00\%
HLC	\%	82.00\%
HLROM	\%	82.00\%
FLT	\%	82.00\%
Ag		
AGL	\%	96.00\%
HLC	\%	96.00\%
HLROM	\%	96.00\%
FLT	\%	82.00\%

12.2 NPV Ranges and Sensitivity Analysis

In order to assess sensitivity of the pit shells and "notional Discounted Cash Flow" ("Notional DCF)" to variation in key modifying factors, a series of pit optimisation runs were completed in NPV Scheduler.

For the purposes of this section, the Notional DCF is defined as the DCF produced by the selected pit shell in the NPV Scheduler software. The notional DCF is based on pit shells only, not pit designs, and is based on the theoretical optimal extraction sequence generated by NPV Scheduler. It also excludes all capital, depreciation/amortisation and taxation considerations, and is therefore only suitable for relative comparison purposes. The notional NPV must not be construed in any way to represent the project NPV for valuation purposes. The full Project NPV can only be assessed via a full financial analysis, including all capital, depreciation/amortisation and taxation considerations.

The key factors tested in the sensitivity analysis were:

- Metal prices
- Pit slopes
- Processing Recoveries (Au, Cu and Ag)
- Mining Costs; and
- Processing Costs

For the analysis, each of the key factors was varied by plus and minus 10%, and the notional NPV of the resulting selected pit shell was compared to that of the "base case" Reserves pit optimisation run, as described in Section 6.4.

Table 14 summarises the results of the sensitivity analysis runs, in both absolute notional DCF terms and in terms of \% change from the base case notional NPV.

Table 14 Sensitivity Analysis Results

Figure 7 Sensitivity Analysis - Spider Graph
It can be seen from Table 14 and Figure 7 that the notional DCF is most sensitive to metal prices and processing recoveries, with a plus/minus 10% variation in both prices and recoveries resulting in almost plus/minus 20% change in notional NPV compared to the base case. For each of the other key factors, a plus/minus 10% change results in only a plus/minus 5% change in the notional NPV.

Importantly, none of the "downside" cases result in a zero or negative NPV, which demonstrates that the project economics are relatively robust.

A full pit-by-pit listing, including pit tonnage and notional NPV charts, for all optimisation runs is provided in Appendix 1.

13SOCIAL / OTHER FACTORS

13.1 Social

To the best of the Competent Person's knowledge, agreements with key stakeholders pertaining to social licence to operate are valid and in place.

13.2 Naturally Occurring Risks

There are no material naturally occurring risk associated with the Ore Reserves.

13.3 Legal and Marketing Agreements

AIMC is currently compliant with all legal and regulatory agreements, and marketing arrangements are in place for all production.

13.4 Governmental Agreements and Approvals

The project is located within a current contract area that is managed under a Production Sharing Agreement (PSA).

The PSA grants the Company a number of periods to exploit defined licence areas, known as Contract Areas, agreed on the initial signing with the Azerbaijan Ministry of Ecology and Natural Resources (MENR). The exploration period allowed for the early exploration of the Contract Areas to assess prospectivity can be extended.

A 'development and production period' commences on the date that the Company issues a notice of discovery, which runs for 15 years with two extensions of five years each at the option of the Company. Full management control of mining in the Contract Areas rests with AIMC.

Under the PSA, AIMC is not subject to currency exchange restrictions and all imports and exports are free of tax or other restriction. In addition, MENR is to use its best endeavours to make available all necessary land, its own facilities and equipment and to assist with infrastructure.

Under the terms of the PSA, the Azerbaijan Government receives a share of the value of all production, less all capital and operating costs that were incurred during the period of production, and also subject to a minimum of 25% of the value of production. Royalties are therefore, in effect, paid to the Government via the PSA, and as such are considered as part of the cost structure for AIMC to operate.

The PSA is valid for the forecast life of mine.

14STATEMENT OF ORE RESERVES

The Ore Reserve stated is inclusive of Measured and Indicated Mineral Resources.
As at 30 June 2020 the total Gedabek Open Pit Ore Reserves, including current stockpiles are:
$\mathbf{1 2 . 5 5}$ million tonnes at $0.70 \mathrm{~g} / \mathrm{t}$ Au for 284koz of gold, $0.21 \% \mathrm{Cu}$ for $\mathbf{2 6 . 0 k t}$ of copper and $4.34 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ for $1,754 \mathrm{koz}$ silver.

Table 15 details a breakdown of the stated Ore Reserve by category.

Table 15 Gedabek Open Pit Ore Reserves

Ore Reserves	Tonnage (Mt)	$\begin{gathered} \text { Gold } \\ \text { Grade } \\ (\mathrm{g} / \mathrm{t}) \end{gathered}$	Copper Grade (\%)	Silver Grade (g/t)	Contained Gold koz	Contained Copper kt	Contained Silver koz
In-Situ							
Proven	8.07	0.72	0.19	3.48	187	15.3	902
Probable	3.65	0.64	0.23	4.87	75	8.5	572
Sub-Total In-Situ Ore Reserves	11.7	0.70	0.20	3.91	263	24	1,474
Existing Stockpiles (all classified as Proven Ore Reserves)							
Agitated Leach	0.02	1.87	0.24	17.79	1	0.0	10
Flotation	0.14	0.90	0.53	11.71	4	0.7	53
Heap Leach (Crushed)	0.06	0.81	0.11	7.71	2	0.1	16
Heap Leach (ROM)	0.61	0.73	0.21	10.23	14	1.3	201
Sub-Total Stockpiles	0.83	0.79	0.26	10.44	21	2.2	279
Total Ore Reserve	12.6	0.70	0.21	4.34	284	26.0	1,754

Note that due to rounding, presented numbers may not add up precisely to totals

APPENDIX 1 - PIT OPTIMISATION RESULTS

	Pit Shell Number		Rock＿tonnes （Mt）		AG＿tonnes（Mt）	FL＿tonnes（Mt）	$\begin{aligned} & \text { HR_tonnes } \\ & (\mathrm{Mt}) \end{aligned}$	HC．tonnes（MA）	Total Processed tonnes（Mt）	$\begin{array}{r} \text { Waste_tonnes } \\ (\mathrm{Mt}) \end{array}$	Strip Ratio	$\begin{array}{\|c\|} \hline \text { Recovered Au } \\ (\mathrm{oz}) \end{array}$	$\begin{gathered} \text { Recovered } \\ \mathrm{Cu}(\mathrm{t}) \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Recovered } \mathrm{Ag} \\ (\mathrm{oz}) \end{array}$	Revenue SM	Processing Cost SM	Mining cost＿SM	NPV＿SM	Inc．NpV	f max NPV	Inc Waste	Ore	CSR	of max ore	\％of max roct
						Total																			
Pit 1（1）1．00\％				4	0.3	0.9	2.5	0.2	3.9	${ }^{0.4}$	0.11	${ }^{40.470}$	${ }^{3,526.7}$	57，708	${ }_{\substack{588.3 \\ 503}}$										
Pit ${ }^{\text {Prit（3）}}$（3） 3.00%					0.4	$\frac{1.1}{1.2}$	${ }_{2.9}^{2.7}$	0．2	${ }_{4.7}^{4.4}$	${ }_{0}^{0.6}$	0．13	46,083 50,024	$4,3,47.6$ $4,831.8$	109,261 132,291	Stio3．2	$\begin{array}{r}533.4 \\ 536.4 \\ \hline\end{array}$	¢10．3	543.6 546.7	¢55．1	59．1\％ 6.3%	${ }_{1}^{128,583} 1$	${ }_{3599,199}^{457}$	0.28 0.34		
Pit 4（4）4．00\％					0.4	1.2	3.2	0.3	5.1	0.8	0.16	54，422			5122．3		512.3		52.9	67．3\％	153，283	360，781	0.42		
Pits（5）5．0\％\％						1.3														69．48	126,78	232，56	0.54		
Pit 6 （6） 6.00%					0.5	1.4	3.5	0.3	5.5	1.1	0.20	59，341	${ }_{5,642.7}$	150，293	5183.3	S42．6	S11．8	S52．6	S51．4	71．3\％	120，243	221，099	0.54		
Pit 7 （7）7．00\％					0.5	1.5	3.6	0.3	5.8	1.2	0.21	61,988	6，013．1	155，279	5140．0	545.0	514.7	554．2	S1．6	73．5\％	${ }^{151,405}$	267,37	${ }^{0.57}$	${ }^{36}$	\％${ }^{12 \%}$
Pit 8 （8）8．00\％				\％	${ }_{0}^{0.5}$	${ }_{1}^{1.5}$	${ }_{3}^{3,7}$	${ }_{0}^{0.3}$	${ }_{6.0}^{6.0}$	1．4	O．23		$6,192.1$ 6.4175	160,057 168325	$\frac{5144.0}{51480}$		S15．2）	¢55．21	51.0 50.9	74.9% 76.18	117,600 1321218	（193，457	0.82 0.67		
Pit 10 （10）10．00\％		${ }^{10}$			0.5	1.6	3.9	0.3	6.2	1.5	0.25	66，20	6，482．4	164，909	\＄149．9	548.2	\＄16．2	\＄56．5	50．4	76．7\％	61，639	7，9，95	0.80	39\％	\％$\quad 13 \%$
Pit 11 （11）11．0\％		1		1	0.5	${ }_{1}^{1.6}$	4.0	0.3	6.4	1.7	0.27	${ }^{68,057}$	${ }^{6,580.9}$	${ }_{1}^{165,886}$		$\stackrel{\text { S49，3 }}{5}$	S11．8．	$\begin{array}{r}557.3 \\ 55 \\ \hline\end{array}$	${ }_{50,8}^{50}$	77．8\％	145，906	154，453	0.94	${ }^{40 \%}$	
Pitit		13		2	0.6	1.6 1.7	${ }_{4.3}^{4.3}$	0．3	6.9	2.2	0．32	${ }_{\text {7 } 7,4799}$	$6,9.212 .0$ 7,245	${ }_{172,4717}^{172,03}$	Stil1．2	551.8 553.8	¢ $\begin{gathered}\text { S18．1．} \\ \text { S19．1 }\end{gathered}$	${ }_{559.9}^{559}$	$\stackrel{516}{50.9}$	80．0\％	334，771 191382	300，329	${ }_{0}^{1.11}$	${ }_{4}^{413^{3}}$	（ ${ }^{\text {\％}}$
Pit 14 （14）14．00\％				3	0.6	1.8	4.4	0.3	7.0	2.3	0.32	73，953	7，364．5	175，26	\＄167．9	\＄54．4	\＄19，3	\＄60．1	50．2	81．5\％	${ }_{55,319}$	${ }_{6}^{26,3,388}$	0.80	${ }_{4}^{43}$	\％16\％
Pit 15 （15）15．00\％		${ }^{5}$			0.6	1.8	4.4	0.3	7.1	${ }_{2.4}^{2.4}$	0.33	74，903	7，455．0	175，863	S170．0	${ }_{\text {¢55．1 }}$						107999 22620	1．02		\％${ }^{16 \%}$
Pit 16 （16）16．00\％		6			0.6	1.9	4.6	0.3	7.4	2.7	0.36	76，722	7，809．4	180，130	S175．2	\＄57．0	520．8	${ }_{561.3}$	50.8	83，2\％	276，037	226,820	1.22		\％17\％
Pit 17 7 （17）17．00\％		7			0.6	1.9	46	0.3	7.4	2.7	0.37	7， 7 ，57	7，863．5	180，260	5178.5					83．5\％	79，271	70，549	1.12	${ }^{466}$	\％${ }^{17 \%}$
$\frac{\text { Pit } 1818 \text {（18）18．00\％}}{\text { Pit } 19 \text {（19）} 19.00 \%}$		18，		${ }^{6}$	0.6 0.6	2.0 2.0	${ }_{4}^{4.7}$	0.4 0.4	7.6 7.8	3.0 3.4	0．40		¢ $\begin{aligned} & 8,138.1 \\ & 8,467.6\end{aligned}$	188，366	${ }_{\text {Sl81．4 }}^{5187.0}$	¢ ${ }_{\text {S59．3，}}^{561.4}$	$\begin{array}{r}522.1 \\ 523 \\ \hline\end{array}$	－ $\begin{array}{r}\text { S62．3 } \\ 563.1\end{array}$	$\begin{array}{r}50.8 \\ 50 \\ \hline 0.8\end{array}$	－	288，693 ${ }_{\text {359，656 }}$	$\xrightarrow{176,829}$	1.63 1.56 1	${ }_{4}^{499}$	（ ${ }^{18 \%}$
Pit 21 （21）21．00\％		21			0.6	2.1	4.9	0.4	8.0	${ }^{3} 7$	0.45	83，312	8，733．7	188，158	\＄191．6	563．2	${ }_{524}$	563.7	50.6	86，4\％	265，916	${ }_{211,367}$	${ }_{1}^{1.26}$	50\％	\％${ }^{19 \%}$
Pit 24（24）24．00\％		24			0.6	2.3	5	0.4	8.4	4	0.51	86,577	9，388．8	210,84	5201.	566.7		565.0	51.3	88.2%				52%	\％${ }^{22 \%}$
（exte		25			0.7 0.7	2.4 2.4	5.2	0.4 0.4	8.6 8.7	${ }_{4.7}^{4.7}$	0.54 0.54		9，966．5 9	217，068 218,96	5205.5 5206.9	¢ $\begin{gathered}56.3 \\ 568.9\end{gathered}$	527.4 527.8	¢65．6	50.6 50.1	899．0\％ 89.2%	311,235 904,63	133,236 84,955	2.34 1.11		
Pit 27 （27）27．00\％		27			0.7	2.4	5.3	0.4	8.8	5.0	0.57	90，076	9，935．0	219，763		570.0			50．4	89．8\％	293，912	96，559	3.04	54%	（ ${ }^{246}$
		${ }^{28}$			0.7	2．5	5	0．4	8.9		0．58	${ }_{\substack{90,556 \\ 99228}}$		${ }_{\text {222，566 }}^{220}$	¢ ${ }_{\text {S212．4，}}^{5123}$	S70．9	¢	－ 56.4	S0．2	－90．19\％	153，022	${ }_{\text {116，937 }}^{51127}$	$\frac{1.31}{150}$	55\％	（1）${ }^{24 \%}$
Piti 30130130.000%		30			0.7	2.5	5.5	0.4	9.0	5.4	0.59	${ }_{91,861}$	$\xrightarrow{10,1,155.4}$	${ }_{222,193}$	${ }_{5}^{5214,6}$	S71．6	520．9	${ }_{566.6}^{56.5}$	¢0．1	90．4\％	10，9422	${ }_{9} 9,1,122$	${ }_{1}^{1.20}$	${ }_{56 \%}^{56 \%}$	\％${ }^{24 \%}$
Pit 31131131.00%		${ }^{1}$			0.7	2.5	5.5	0.4	9.1	5.5	0.60	92，290	10，266．1	223，688	${ }_{5215,9}$	\＄72．1	530．2	${ }_{566.7}$	50.1	90．6\％	${ }^{110,022}$	${ }_{6}^{63,151}$	${ }_{1}^{1.74}$	${ }_{56 \%}^{56}$	
${ }^{\text {Pit }} 33$ 3 331333.00%		，		7	0.7	${ }^{2.5}$	${ }_{5}^{5.5}$	0.4	${ }^{9.2}$	${ }_{5}^{5.6}$	0.61	${ }^{92,776}$	${ }_{\text {10，406，}}$	224，393	$\frac{5217.5}{5}$	\＄72．8	¢30．6	${ }_{\text {S66．9 }}^{5683}$	S0．1	90．8\％	${ }^{19,9722}$	${ }^{73,695}$	1.62 1.54	${ }_{\text {57\％}}^{50}$	（\％）
		$\begin{array}{r}34 \\ \hline 5 \\ \hline\end{array}$		［14	0.7 0.7	$\begin{array}{r}2.6 \\ \hline 2.6 \\ \hline\end{array}$	5.6	0.4 0.4	${ }_{9}^{9.3}$	6.0 6.1	0．65		－10．643．4	$\xrightarrow{231,535}$		$\begin{array}{r}\text { S74．2 } \\ \hline 574.7\end{array}$		$\begin{array}{r}\text { S67．3 } \\ \hline 67.4 \\ \hline\end{array}$	¢0．51	91．4\％	423，463 100,19	$\xrightarrow{119,623}$	3.54 1.92	${ }_{\text {5 }}^{58 \%}$	
Pit $37(37)$ 37．00\％		37			0.7	2.7	${ }_{5}^{5.6}$	0.4	9.4	${ }_{6}^{6.2}$	0.66	94，990	10，843，	${ }_{\text {231，45 }}^{2325}$	S223，9	$\underset{\$ 75.3}{567}$	S32．4	${ }_{567.5}^{565}$	${ }_{50.1}^{503}$	91．6\％	93，770	69，169	1.36 1.69	${ }_{\substack{58 \% \\ 59 \%}}$	\％${ }^{27 \%}$
		30			0.7	2.7 2.8	5.8 5.8	0.4 0.4	9.6	${ }_{6}^{6.7}$	0.68 0.70	${ }_{96,953}^{96,27}$	$11,070.1$ 11,263	$\underset{\text { 232，}}{23,365}$		$\begin{array}{r}\text { ¢77．7．} \\ \hline 77.6\end{array}$	$\underset{\substack{533.5 \\ 534.2}}{ }$	¢ $\begin{gathered}567.8 \\ 567.9\end{gathered}$	¢0．3）	$\frac{92.0 \%}{92.2 \%}$	${ }_{\text {221，967 }}^{318}$	194，440 108,166	1.69 2.02	¢ ${ }_{\text {com }}^{59 \%}$	
Piti41（41）41．0\％\％		1			0.7	2.9	5.9	0.4	9.9	7.7	0.77	99，69	11，756．0	24，744	\＄237．0	580.2	\＄36．6	568.6	50.7	93．1\％	924，979	225，794	4.10	${ }_{61 \%}$	\％30\％
Pit 42 （42）42．00\％		12			0.7	2.9	6.0	0.4	10.0	7.9	0.79	100，521	${ }^{11,842,7}$	245,013	5239.1	580.8		568.8	50.2	93，3\％	247，08	110,86	2.23	62%	\％${ }^{31 \%}$
Pita3（43）43．00\％		${ }_{4}^{4}$			0.7 0.7	2.9 3.0	${ }_{6.1}^{6}$	${ }_{0}^{0.4}$	10.1 10.2	8.1 8.2	0．80	101，070	－11，943．0	${ }_{247,731}^{24,621}$	¢ ${ }_{5}^{5240.6}$	年 $\begin{array}{r}\text { 881．4 } \\ 582.3\end{array}$	¢ ${ }_{5}^{537.8} 5$	S68．9 569.0	$\begin{array}{r}\text { so．} \\ 50.1 \\ \text { sol } \\ \hline\end{array}$	－93．5\％${ }_{\text {93．6\％}}$	－176，014 ${ }_{12,429}$	63，164 88,576	${ }_{1.96}^{2.79}$	${ }_{6}^{63 \%}$	
Pit 45 （45）45．00\％		5			0.7	3.0	6.1	0.4	10.2	8.3	0.81	101，459	12，297．0	247,743	5243.3	588.0	538.5	569.0	50．0	93．7\％	${ }^{73,858}$	${ }^{51,677}$	1.43		
		建			0.7 0.7	${ }_{3.1}^{3.0}$	${ }_{6.2}^{6.1}$	0．4	10.3 10.4	${ }_{8.7}^{8.4}$	0.82 0.83	${ }_{\text {102，}}^{1027}$	－	24，880 24888	52443	588.3 584.2	¢	569.1 569.2	¢0．1	－${ }_{\text {93，7\％}}^{93,9 \%}$	${ }_{2}^{1323,598}$	$\xrightarrow{17,3535}$	${ }_{2.33}^{1.71}$	649	\％${ }_{\text {\％}}{ }^{32 \%}$
Pit 51 （51）51．0\％\％		${ }_{1}$			0.8	3.2	6.3	0.4	10.6	9.5	0.90	105，086	12，889．5	252，206	S252．9	588.8	541.9	569.6	${ }_{50.4}$	994．4\％	${ }_{866,93}$	220，993	${ }_{3.92}$	66\％	－${ }^{35 \%}$
		S2，		4	${ }^{0.8}$	$\stackrel{3.2}{3.2}$	${ }_{6.3}^{63}$	0.4	10.7	9.7		${ }_{\text {cosen }}^{\text {10，435 }}$		$\xrightarrow{252,384}$	S254．4	－${ }_{\text {587．6 }}^{588}$		S69．6		$\frac{94.5 \%}{906 \%}$	138,444 22953	$\begin{array}{r}75,500 \\ \hline 6579\end{array}$	1.83 39	${ }_{6}^{66 \%}$	（ ${ }^{35 \%}$
Pit 54 （54）54．00\％		54		8	0．8	${ }_{3.3}$	${ }_{6.4}^{6.4}$	0.4	10.9	10.8	0.99	1008，737	－13，370．5	${ }_{2653,295}$	\＄2561．4	588．9	¢45．3	S70．1	¢0．4	94．5\％	－ $\begin{array}{r}\text { 209，563 } \\ \hline 90513\end{array}$	177，460	5．921 5.21	${ }_{68 \%}^{68}$	
Pitits 5 （5）55．00\％		5 5		25	0.8 0.8	3.3 3	${ }_{6}^{6.5}$	0.4 0.4	${ }_{111.1}^{112}$	${ }_{111.1}^{113}$	1.00 1.01	10，9，51］ 100193	－ 113,9997	$\xrightarrow{263,4616}$		¢991．0	¢54.2 5468 6.8	¢ ${ }_{\text {S70．2 }}^{570.3}$	¢0．1	－95．2\％		$\begin{array}{r}152,143 \\ \hline 72956\end{array}$	2.07 2.74	$\underset{\substack{69 \% \\ 69 \%}}{6}$	\％${ }^{38 \%}$
Pritit		－			${ }_{0}^{0.8}$	3.3 3.4	6.6	0．4	${ }_{\text {11．2 }}^{11.2}$	11.4	1.02	${ }_{110,575}^{10,93}$	13，629．2	${ }_{\text {26，} 26,95}^{\text {20，}}$	\＄266．4	\＄92．0	¢477．2	570．3	¢0．0	95．4\％	${ }_{120,764}$	7，7，326	${ }_{1.162}$	${ }_{70 \%}^{60 \%}$	
Pit 58 （58） 58.00%		5			0.8	3.4	${ }_{6}^{6.7}$	0.4	11.3	11.7	1.03	${ }^{111,299}$	13，687．1	265，194	S267．9		¢47．8．	S70．4	S0．1		247,488	${ }^{61,501}$	4.02	70\％	－${ }^{40 \%}$
		60		－ 7	${ }_{0}^{0.8}$	3.4 3.4	${ }_{6.7}^{6.7}$	0.4 0.5	11.4 11.4	$\xrightarrow{12.0}$	1.06 1.07	${ }^{11212,5661}$	$13,844,8$ $13,856.1$	$\xrightarrow{269,963}$			¢ ${ }_{548.7}^{5493}$	$\stackrel{570.5}{50.5}$		955．7\％	3488999 198,25	$\xrightarrow{72,75}$	${ }_{3.10}^{4.9}$	710\％	\％${ }^{40 \%}$
Pitit $62(62)$ 62．00\％		6_{2}			0.8	3.5	${ }_{6}^{6.8}$	0.5	11.6	${ }^{13.0}$	1.12	114，217	14，082．7	278，188	S275，3	595.1	551.1	570.7	50．2	96．0\％	721,089	147，166	4.90	${ }^{72 \%}$	－ 42%
		64		9	${ }_{1.5}^{0.8}$	${ }_{3.9}^{3.5}$	${ }_{8.3}^{6.9}$	0.6	${ }_{14.3}^{11.3}$	${ }_{3}^{13.1}$	${ }_{2}^{1.34}$	${ }_{\text {114，}}^{114,878}$		${ }_{4917,71}^{278,69}$	¢ ${ }_{\substack{\text { S276．1 } \\ 5372}}$	¢595．3	S51．5 599.6	570.8 573.1	¢50．4	${ }_{\text {9，9．0\％}}^{96 \%}$	${ }^{10468,788}$	${ }_{2,682,207}^{66,56}$	${ }_{7.63}^{2.3}$	$\xrightarrow{\substack{12 \% \\ 89 \%}}$	\％${ }_{\text {82\％}}$
Pit 69 969 69．00\％					1.5	4.0	${ }^{8.4}$	0.6	14.5	34.5	2.38	166，169	16，216，8	498，960	\＄377．0	5123.5		578.3	50.1	99．4\％	964，631	146，979	6.56	90\％	
		1		1	1.5 1.6	4．0	8.5 8.6	${ }_{0}^{0.6}$	$\begin{array}{r}14.6 \\ 14.8 \\ \hline\end{array}$	35.5 36.0	${ }_{2}^{2.43}$	－168，933		S02，615	$\underset{\substack{5881.3 \\ 5884.5 \\ \hline}}{\text { S }}$	$\xrightarrow{5124.7}$	$\xrightarrow{5104.2}$	$\begin{array}{r}573.4 \\ 573.4 \\ \hline\end{array}$	S0．1	年99．6\％\％		${ }_{\text {1464，522 }}^{1639}$	6.25 3.40	－	
Pit 73 （73）73．00\％		3			1.6	4.0	8.6	0.7	14.9	36.2	2.44	170，371	${ }_{\text {16，507，}}$	502，777	5885.7	\＄122．5	\＄106．2	\＄73．5	50.0	99．7\％	206，436	62，944	3.28	${ }_{92 \%}$	
Pit $76(776) 76.00 \%$		${ }^{6}$			1.6	4.2	8.7	0.7	15.1	37.1	2.46	172，067	16，920，1	507，964	5391.0	S129．0	S108．5	573，5	50.1	99．8\％	888,49	197，276	4.50	${ }_{93 \%}$	
Pit 80 （80）80．00\％		${ }^{5}$			$\stackrel{1.6}{1.6}$	$\stackrel{4.2}{4.2}$	${ }_{8.8}^{8.7}$	0.7	${ }_{15.3}^{15.1}$	37.0 38.0	2．49	173,454 17429	－ $117,9794.4$	${ }_{5}^{511,115}$	¢ ${ }_{5}^{59393.7}$	$\xrightarrow{5129.9}$	$\xrightarrow{\text { S109．9 }}$ S10．9	573.6 573.6		－99．8\％	${ }_{\text {－}}^{\text {313，597 }}$	70，935 130,495 1	8.95 2.40	${ }_{994}^{994}$	
Pit $81(81181.00 \%$		${ }^{1}$			1.6	4.2	8.9	0.7	15.3	38.3	2.50	174，641	17，085，7	511,121	${ }_{5396,3}$	\＄130，7	\＄111．4	\＄77．6	50.0	99．9\％	203，771	69，080	2.95	95\％	
Pit 83 （8）83 83．0\％		3			1.6	4.2	9.0	0.7	15.4	38.5	2.50	175，292	17，116．8	${ }_{511,418}$	${ }_{5397.5}$	S131．1	S112．2	577．6	50.0	99．96	${ }^{272,388}$	109，422	2.49	${ }_{96 \%}$	
$\frac{\text { Prit }}{\text { Pit } 878 \text {（87）} 878.000 \%}$		${ }^{87}$			1.6 1.6	${ }_{4.2}^{4.2}$	9.1	0.7	${ }_{15.6}^{15.6}$	${ }_{39.1}^{39.1}$	${ }_{2.51}^{2.50}$	${ }_{1}^{175,5812}$	${ }_{\text {17，1992，}}$	5512，204	${ }_{5}^{5900.1}$	$\stackrel{531.5}{\text { S131．9 }}$	${ }_{\text {¢113．7 }}^{\text {S12．9 }}$	$\begin{array}{r}\text { S73．6 } \\ \hline\end{array}$		99．9\％	${ }_{322,094}^{22,01}$	${ }_{75,192} 7$	${ }_{4.31}^{4.31}$	${ }_{96 \%}^{96 \%}$	
Pit 89 （89）89．00\％		9			1.6	4.2	9.2	0.7	15.7	39.5	2.52	177，424	17，230，9	512，979	5401.8	S132．4	S114．9	\＄73，7	50.0	99．9\％	423,35	130，705	3.24	${ }^{97 \%}$	\％${ }^{\text {95\％}}$
Pitit 91919 91．0\％\％		1		\％ 7	1.6 1.7	${ }_{4.3}^{4.3}$	${ }_{9.3}^{9.3}$	0.7 0.7	15.8 15.9	39.9 41.2	2.53 2.59	${ }_{\text {178，}}^{18,756}$	［17， $17,39,7$	514，988		${ }_{\text {Sl132．9 }}^{5134.3}$		${ }_{5}^{5737.7}$	50.0 50.0	100．0\％	38，966 1,328888	$\xrightarrow{17,002}$	4．96 8.44	${ }_{9}^{998 \%}$	
Pit 96 （96）96．00\％		6		4	1.7	4.3	9.4	0.7	16.0	41.4	2.59	181，144	17，394，9	520,56	5409．0	5134.7	\＄119．5	573.7	50.0	100．0\％	205，288	66,163	3.10	\％	
		（108		9	1.7 1.7	4.3 4.4	9.4 9.4	0.7 0.7	${ }_{16.1}^{16.1}$	${ }_{42.1}^{41.8}$	${ }_{2.61}^{2.60}$	$\xrightarrow{181,777} 1$	17， $17.653,5$	520，500	［ ${ }_{\text {S410．7 }}^{54123}$	${ }_{\substack{\text { S135．5 } \\ 51363}}^{\text {S }}$	S120．4	573.7 5737	50.0 50.0	（100．0\％	－ $\begin{aligned} & 365,399 \\ & 276,526\end{aligned}$		4.29 4.30	100\％	\％${ }^{\text {90\％}}$

	Pit Shell Number		Rock_tonnes (Mt)		AG_tonnes (Mt)	FLLomes (Mt)		HC_tonnes (Mt)	$\begin{gathered} \text { Total Processed } \\ \text { tonnes (Mt) } \end{gathered}$	Waste_tonnes (Mt)	Strip Ratio	$\begin{array}{\|c\|} \hline \text { Recovered Au } \\ \text { (oz) } \end{array}$	$\begin{gathered} \text { Recovered } \\ \mathrm{Cu}(\mathrm{t}) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Recovered } \mathrm{Ag} \\ \text { (oz) } \end{array} \\ \hline \text { Total } \end{array}$	Reverue Sm	Procesing Cost SM	Mining cost_SM	NPV_SM	Inc. NPV	of max NPV	Inc Waste	nc ore	Inc SR	\% of max ore	of max rock
Pit 1(1) 1.00\%					Total	Total	Total	Total	${ }_{\text {Total }}$	0.4	0.11	${ }_{\text {Totala }}^{\text {T5,001 }}$	${ }_{\text {Total }}^{\text {T.181, }}$	${ }_{\text {Total }}^{42,45}$										${ }^{22 \%}$	\%
Pit 2(2) 2.00\%						0.9		0.2	4.0	0.5	0.13	42,250	3,800.1	87,200	5993,	${ }_{530.3}$		${ }_{540.3}$	55.4	57.7\%	145,847	496,024	0.29	${ }_{26 \%}$	
Pit 3 (3) 3.00\%						1.0	2.7	0.2	4.3	0.6	0.15								${ }_{\text {S2, }}$	614\%	93,784				
Pit 4 (4) 4.00\%					0.4	1.1	${ }_{2.8}$	0.2		0.7	0.16	${ }_{46,927}$	4,457.4		S105.4			${ }_{544.3}$	${ }_{\text {S }}^{51.5}$	63.4\%	74,152	177,868	0.42		
Pits (5) 5.00\%					0.4	1.2																			
Piti6(6) 6.00%						1.2	3.2	0.3		1.0							S12.8		S1.5	70.36	118,244	263,286	0.45		
Pit (7) 7.00\%					0.4	${ }_{1}^{1.3}$	${ }^{3.4}$	0.3	5.4	1.2	0.22	56,81	5,344.9	146,732	\$127.8	540.7	\$13.6	550.9	${ }_{51.8}$	72.9\%	158,138	200,182	0.66	${ }^{34 \%}$	- ${ }^{11 \%}$
Pitit (8) 8.00\%					0.4 0.4	${ }_{1.3}^{1.3}$	3.5 3.6	${ }_{0.3}^{0.3}$	$\begin{array}{r}5.5 \\ 5.6 \\ \hline\end{array}$	${ }_{1.3}^{1.3}$	0.23	58,194,	5 5.4 .41 .3	146,857 149227	$\underset{\text { S130.3 }}{513.1}$	S41.5 542.5	S14.0)	¢551.6	50.7 50.7	73.8% 74.88	75,790 78.037	108,208 145803	0.70 0.54		
Pit 10 (10) 10.00\%		${ }^{10}$			0.5	1.4	3.6	0.3	5.8	1.5	0.25	${ }_{60,876}$	5,729,9	${ }_{150,586}$	\$136.4	\$43.5	\$15.0	${ }_{553.0}$	50.8	75.9\%	116,583	134, 148	- 0.87	${ }^{37 \%}$	\% ${ }^{12 \%}$
Pit $11(11)$ 11.00\%		1			${ }^{0.5}$	${ }_{1}^{1.4}$	${ }^{3.7}$	${ }^{0.3}$	5.9	1.6	0.27	${ }^{61,999}$	5,974,9	152,455	S139.3	\$44.6	\$15.5		\$0.6.	${ }^{76.8 \%}$	103,107	${ }^{143,928}$	0.72		
(fit 12(12) 12.0\%\%					0.5 0.5	1.5 1.5	$\begin{array}{r}3.9 \\ 4.0 \\ \hline\end{array}$	${ }_{0.3}^{0.3}$	${ }_{6.1}^{6.4}$	1.9 2.1	0.30	64,899 67,186	${ }_{\substack{6,217.7 \\ 6.422 .5}}^{\text {c, }}$	$\xrightarrow{154,990}$	${ }_{\text {Si45.9 }}^{\text {Sis1.0 }}$	S46.9 588.6	¢11.6	${ }_{\text {S } 55.0}^{5561}$	S1.4 5 S1.1	78.8% 80.3%	288,333 219,026	${ }_{2}^{274,539}$	${ }_{0}^{1.17}{ }_{0}^{0.78}$	-31\% ${ }_{4}^{39 \%}$	- ${ }^{\frac{185}{198}}$
Pit 14 (14) 14.00\%		14			0.5	1.6	4.1	0.3	6.5	2.1	0.33	67,847	6,555.1	161,415	\$152.6	\$99.1	\$17.9	556.5	50.3	80.8\%	71,567	85,12	0.84	416	- 148\%
Pit 15 (15) 15.00\%					0.5	1.6		0.3	6.5		0.34	68.596	6,585.8	1616,64	S154,3	\$99.8		556.8	50.3	81.2\%	84,76	87,026	0.97	${ }^{42 \%}$	- 15\%
Pit 16 (16) 16.00\%						1.6		0.3	6.7	2.3	0.35	6, 3,32	6,684,3	161,812	\$156.1	\$50.4	518.7			81.7\%	91,911	113,464	0.81	${ }^{43 \%}$	
Pit 17 (17) 17.00\%					0.5	1.7	4.3	0.3	6.8	2.5		70,599	${ }_{6}^{6,851.8}$	163,482	S159.2	\$51.4	\$19,3	¢57.7		-82.5\%	174,501	123,102	${ }_{1}^{1.42}$	${ }_{4}^{43 \%}$	
Pit 18 (18) 18.00%		8			0.5	1.7		0.3	7.0	2.8	0.40	72,461	7,198.4	167,767	S164.4	555.4	520.4	S58.5	S0.8,	83.7\%	288,003	${ }^{238,924}$	1.21	${ }^{45 \%}$	- ${ }^{16 \%}$
Pit 19 (19) 19.00\%		19			0.5	1.8	4.5	0.3		2.8	0.40	72,967	7,236.6	168,001	5165.4					84,0\%		67,907	0.90		- ${ }^{16 \%}$
Pit 20 (20) 20.00\%		2			0.5	1.8	4.5	0.3	7.2	3.0	0.41	7,651	7,471.1.	168,434	S167.9	\$54.9	521.2	559.0	50.3	84.4\%	132,604	115,267	1.15	${ }^{46 \%}$	- $\frac{17 \%}{17 \%}$
		1			0.5	1.9 2.0	${ }_{4.7}^{4.7}$	${ }_{0.3}^{0.3}$	7.3 7.5	${ }_{3.3}^{3.2}$	0.43	74,69 75,462	7,066.9 8.0411	${ }_{172,46}^{172,46}$		$\stackrel{556.1}{557.7}$	¢	${ }_{559.8}^{559.4}$	(${ }_{\text {85, }}^{85.16 \%}$	$\xrightarrow{11537885}$	${ }_{\text {136,988 }}^{167,57}$	$\stackrel{1.27}{0.94}$	$\frac{47 \%}{48 \%}$	- ${ }_{\text {\% }}^{18 \%}$
Pit 23 (23) 23.00\%		23			0.6	2.0	4.7	0.3	7.6	3.5	0.46	76,977	8,195.8	173,132	\$176.9	\$58.8	523.1	560.2	S0.4	86,18	175,277	101,735	1.72	49%	(${ }^{188 \%}$
(eit 24.244 24.0\%\%		24			0.6	2.0	4.7	0.3	7.7	3.6	0.47	77,25	${ }^{8,301.6}$	173,06	S178.8			560.4		86.5\%			1.97		
		25			${ }_{0}^{0.6}$	2.0	${ }_{4.8}^{4.8}$	${ }_{0.3}^{0.3}$	7.7 7.8	3.7 3.9	0.48	77,909 78,646		173,965 174422	$\xrightarrow{\text { S180.11 }}$ S1820	559.9 560.7	523.8,	560.6 560.9	¢50.2	- 86.88	110,477 14966	54,881 64210	2.01 2.29	50\%	- ${ }^{19 \%}$
Pit 27 (27) 27.00\%		27			0.6	2.1	4.8	0.3	7.9	4.0	0.51	79,307	8,526.9	175,135	\$183.5	561.2	524.7	561.1	50.2	87.4\%	118,142	86,95	1.37	50\%	
Pit $29(29) 29.00 \%$		9			0.6	2.2	5.0	0.3	8.2	4.7	0.57	${ }^{82,047}$	${ }^{9,051.6}$	202,298	S191.6	${ }_{563.9}$	\$26.7	${ }_{562,2}^{5}$	${ }_{51.1}^{51 .}$	890\%\%	${ }_{687,206}$	${ }^{290,506}$	${ }_{2}^{2,37}$	${ }_{52 \%}$	- ${ }^{21 \%}$
Pit 30 (30) 30.00%		${ }^{0}$			0.6	2.3	5.1	0.4	8.4	5.1	0.62	83,944	9,352.3	2050,037	5196.6	565.8	528.1	562.8	${ }_{50.6}^{50 .}$	89.9\%	${ }_{4}^{48,527}$	186,589	2.46	${ }_{54 \%}$	
Pit 311311) 31.00\%		1			0.6	${ }_{2}^{2.3}$	5	0.4	8.4	${ }_{5}^{5.3}$	0.62	${ }_{8}^{84,637}$	9,476.35	206,187	S198.4		S28.5	¢ ${ }_{563.0}^{5631}$	(50.2	90.1\%6	${ }_{\text {134,005 }}^{1069}$	${ }_{\text {90,989 }}^{61417}$	${ }_{1}^{1.47}$	-54\%	
		(34			0.6 0.6	2.4 2.4	5.2 5.2	0.4 0.4	8.5 8.6	${ }_{5.5}^{5.4}$	0.63 0.64	85,056 85,719	9,572.5	206,344 207,320		¢67.2)	$\begin{array}{r}528.9 \\ 529.4 \\ \hline\end{array}$	¢ $\begin{array}{r}\text { S63, } \\ 563 \\ \hline\end{array}$	(${ }_{\text {S0.1 }}^{50.2}$	-90.3\%	106,299	-61,477 9	1.73 1.88 1	55\%	- $\quad$$23 \%$ 23%
Pit 36 (36) 36.00\%		36			0.6	2.4	5.3	0.4	8.7	5.8	0.67	86,806	9,845.0	207,722	S204.1	568.9	\$30.2	${ }_{563.5}$	${ }_{50,3}$	90.9\%	262,839	${ }^{92,407}$	${ }_{2}^{1.84}$	56\%	- ${ }^{24 \%}$
Pit 38 (38) 38.0\%\%		38			0.6	2.5	5.3	0.4	8.7	5.9	0.68	87,176	9,920.2	208,050	5205.2	569.4	530.5	563.6	50.1	91.1\%	109,161	53,652	2.03	56\%	- 248
Pit 39 (39) 39.00\%		3			0.6	2.5	5.3	0.4	8.8	${ }^{6.1}$	0.69	87,06	10,102, 2	208,050	S207.0	570.2	531.0	563.8	${ }_{50.1}$	91.3\%	148,168	71,791	2.06	${ }_{5}^{57 \%}$	- ${ }^{25 \%}$
Pit $40(40)$ 40.00\%		0			0.7	2.6	${ }_{5}^{5.5}$	0.4	${ }_{9.1}$	6.9	0.76	90,35	10,573.4	217,806	¢	¢	S33,4	${ }_{564.5}^{56.5}$	¢0.7	92.3\%	862,2121	$\xrightarrow{299,195}$	${ }_{2}^{288}$	${ }_{\text {58\% }}^{58 \%}$	
Pit ${ }^{\text {Pit } 4 \text { (4) } 414 \text { 4.00\% }}$		1			${ }_{0}^{0.7}$	2.7 2.7	5.5 5.5	${ }_{0}^{0.4}$	${ }_{9.3}^{9.3}$	${ }_{7}^{7.2}$	${ }_{0}^{0.78}$	91,000	- $10,722.6$	${ }_{217,861}^{217}$	${ }_{\text {S }}^{5216.4}$	$\underset{\text { S74.2 }}{57}$	¢ ${ }_{533,9}^{53,2}$	- ${ }_{\text {S64,7 }}^{564.7}$		${ }_{92.2 \%}^{92.5 \%}$	180,388 98,51	74,581 68,032	2.42 1.44	59\%	
Pit $44(44) 74.00 \%$		4			0.7	2.7	5.6	0.4	9.4	7.9	0.83	93,34	11,072.9	226,601	5222.4	575.8	535.9	565.2	S0.5	93.3\%	647,446	162,276	3.9	60\%	- 296
Pitat (4) 45.0\%\%		4			0.7 0.7	2.8 2.9 1	$\begin{array}{r}5.7 \\ 5 \\ 5 \\ \hline\end{array}$	0.4 0.4	9.6	${ }_{8.6}^{8.6}$	0.86	${ }_{9}^{94,5551}$	-11,432.4.	227,860 228,45	¢5226.7 5228.8	$\begin{array}{r}577.8 \\ 578.5 \\ \hline\end{array}$	¢	S65.5	(50.3		447,622 277609	${ }_{\text {211,399 }}^{13,95}$	2.12 3,75	$\stackrel{62 \%}{62 \%}$	(${ }^{30 \%}$
Pit 48 (48) 48.00\%		8			0.7	3.0	5.8	0.4	9.9	9.1	0.92	96,540	12,041,5	232,114	5233.4	580.6	539.5	565.9	S0.3	94.4\%	524,575	164,841	3.18	${ }^{63 \%}$	- 31\%
Pit 51 51 [11) 51.00\%		${ }^{1}$			0.7	3.0	5.9	0.4	10.0	9.7	0.97	98,385	${ }^{12,193,3}$	238,898	S237.5	${ }_{\text {¢ }}^{581.8}$	${ }_{541.1}$	${ }_{566.3}^{56}$	${ }_{50,3}^{5}$	94.8\%	${ }_{646,621}$	${ }^{150,468}$	4.30	${ }_{64 \%}^{64 \%}$	
Pits 5 (53) 53.00%		5			${ }^{0.7}$	${ }^{3.1}$	${ }^{6.0}$	0.4	10.1	9.9	0.98	98,799		238,999 229720	¢ ${ }_{\substack{\text { S2393, } \\ ¢ 2216}}$	$\begin{array}{r}5828 \\ 5885 \\ \hline\end{array}$	¢ 54.7	${ }_{\text {S66,3 }}^{565}$	\% 50.1	94.9\%6	148,882	105,633 7725	1.41 .53	${ }_{\text {cis\% }}^{65 \%}$	33\%
${ }^{\text {Pitit } 54(54)} 5$ 54.0\%		54			0.7 0.7	${ }_{3.1}^{3.1}$	6.0 6.0	0.4 0.4	10.2 10.3	10.3 10.6	1.01 1.02 1	99,700 100,188	- 12.512 .6	24,720 24,199				¢ 56.5	$\begin{array}{r}50.2 \\ 50.1 \\ \hline\end{array}$	95.2\%	300,734 264,07	${ }_{\text {95, }}^{7}$	5.03 2.78	${ }_{\text {cke }}^{66 \%}$	
Pit 58 (588 58.00\%		8				3.1	6.1	0.4	10.4	10.7	1.03	100,721	12,774,0	246,474	S244,9				50.1	95.4\%	191,998		2.12	${ }^{67 \%}$	
Pit 59 (59) 59.00\%		9			0.7	3.2	6.2	0.4	10.5	11.3	1.07	102,013	13,023,6	249,307	5248.5	586.1	545.5	566.9	50.2	95.7\%	57,935	133,188	4.17	67%	
- Pit 60 (6) 60.00%		60			0.8	${ }^{3.3}$	${ }_{6}^{6.3}$	0.4	10.8	12.4	1.15	105,208	13,338.2	249,33	S255.6	S89,0	548.2	567.2	${ }_{50,3}$	96.26	1,082,397	294,674	4.39	${ }^{69 \%}$	- ${ }^{388}$
		${ }^{61}$			0.8 0.8	${ }_{3.3}^{3.3}$	6.3 6.4	0.4 0.4	10.8 10.9	12.6 12.8 1	1.16 1.17 1.2	-105,607	- $113,385.9$	${ }_{\text {249, }}^{24,780}$	$\xrightarrow{52556.6}$			$\underset{\substack{567.2 \\ 5673}}{\text { cher }}$	50.0 50.0	96.2\% 9	${ }_{\text {122,07 }}^{197,655}$	54,652 100,557	2.78 1.96	${ }_{\text {¢ }}^{\text {6\%\% }}$	
- Pitit 64.64$)$ 64.0\%\%		${ }_{6} 4$			0.8 0.8	3.4 3	$\stackrel{6.5}{6.5}$	0.4 0.4	11.1	$\begin{array}{r}13.7 \\ 138 \\ \hline 1\end{array}$	${ }_{1}^{1.24}$	108,360	${ }_{\text {13,613,2 }}$	258,800	S262.6	\$91.1.	S51.6	${ }_{567.5}^{5675}$	S0.2	96.6\%	958,050	160,822	5.96	${ }^{717}$	
		${ }_{6} 8$			${ }_{0}^{0.8}$	${ }_{3.4}^{3.4}$	${ }_{6.6}^{6.5}$	${ }_{0.4}^{0.4}$	$\xrightarrow{11.2}$	13.8 14.1	${ }_{1.25}^{1.24}$	${ }^{108,693}$		258,880 2588	$\stackrel{\text { S263.4 }}{525.0}$	¢ ${ }_{\text {¢921.5 }}$	¢	$\begin{array}{r}\text { S67, } \\ 567.6 \\ \hline\end{array}$	(50.0	96.7\% 96	${ }_{\text {200, } 524}^{1 / 41}$	60,324 85,72	1.67 2.93	\%2\%	
Pit 69 (69) 69.00%		9			0.8	${ }^{3} 4$	6.6	0.4	11.3	14.2	1.26	109,705	13,800.6	259,422	5265.9	592.5	553.1	567.6	50.0	96.8\%	146,689	60,717	2.42	72\%	
		$1{ }^{2}$			${ }_{1.5}^{1.5}$	4.0 4.0	${ }_{8,2}^{8.2}$	${ }_{0.6}^{0.6}$	14.3 14.3	${ }^{37.7}$ 37,9	2.64	${ }_{\text {162, }}^{1685}$					S108.2		51.9 50.0		-3,517.660	${ }_{\text {2,988,712 }}^{53,745}$	7.90 287		
Pit 73 (77) 74.00\%		${ }_{3}$				4.0		0.6	14.5	39.5	2.72	166,733	16,351.2	501,725	5378.8	\$124.5	\$112.4	569.7	50.2	99.76	1,611,221	198,839	8.10	${ }^{93 \%}$	
Pit 78 (79) 79.00\%		8			${ }_{1}^{1.5}$	4.0	${ }_{8}^{8.4}$	0.6	14.6	39.7	2.72	${ }_{\text {l }}^{167,158}$		502,580 508054	¢380.2		S113.0	¢6977	S0.0. 501 50	9997\%	215,136 79364	$\xrightarrow{81,273}$	2.65 .960	99\%	
(Pit 9 (8) (80) 80.0\%\%		崖			1.6 1.6	4.0 4.1	8.5 8.5	0.6 0.6	14.7 14.8	40.5 40.7	$\begin{array}{r}2.75 \\ \hline 2.76 \\ \hline\end{array}$	${ }_{\text {168,933 }}^{1693}$							50.1 50.0 50	99.8\%	79,364 219,431	81,215 53,199	9.60 4.12		
		4			${ }_{1}^{1.6}$	${ }_{4}^{4.1}$	${ }^{8.6}$	0.6	14.8	${ }_{41,1}^{413}$	2.77	170,139	${ }^{10,611.1}$	508,34415	${ }_{\text {S }}^{5886.0}$	${ }_{\text {S }}^{5127.1}$	S116.3	${ }_{\text {S69, }}^{5698}$	(50.0	999\%6	368,602 19,522	- ${ }_{\text {92,366 }}$	$\begin{array}{r}3.92 \\ \hline 2\end{array}$	-99\%	- ${ }^{93 \%}$
Pit 85 (86) 86.00\%		87			${ }_{1.6}^{1.6}$	${ }_{4.1}^{4.1}$	8.6 8.8	0.6 0.7	14.9 15.2		2.76 2.83	$\xrightarrow{170,688}$					$\xrightarrow{5116.9} 5$	569.8 569.8	(50.0	- 10.90%		88,681 226,018	2.21 .53		
Piti 89 900) 90.00\%		9			1.6	4.1	8.9	0.7	15.3	43.4	2.84	174,883	16,886,8	515,299	\$399.3	\$129.9	\$122.0	\$69,9	$\begin{array}{r}50.0 \\ 50.0 \\ \hline\end{array}$	100.0\%	${ }^{1,900,324}$	${ }^{204,578}$	4.11	98\%	- ${ }^{97 \%}$
Pit 3 3(95) 95.00\%		3			1.6	4.1	8.9	0.7	15.4	43.9	2.86	175,820	${ }^{16,88550}$	${ }_{517,388}$	5397.2	${ }_{5130.6}$	5123.2	5699	50.0	100.0\%	${ }^{471,388}$	86,194	5.47	8\%	
		${ }_{98}^{96}$			${ }_{1.6}^{1.6}$	4.2	${ }_{9.1}^{9.1}$	0.7	${ }_{15}^{15.6}$	${ }_{44.6}^{44.8}$	${ }_{2.87}^{2.87}$	${ }_{1}^{177,77,93}$	${ }_{\text {10,988.1 }}^{16,967.1}$		${ }_{\substack{\text { S400.1 } \\ 5400.7}}$	${ }_{\text {Si31.7 }}^{\substack{\text { S131. }}}$	${ }_{\text {Sl125. }}^{\substack{\text { S125] }}}$	$\frac{569.9}{569.9}$	(50.0	${ }_{\text {100.0. }}^{100 \%}$	${ }_{1}^{732,1375}$	${ }_{\text {cki, }}^{2023}$	3.24	$\xrightarrow{100 \%}$	- ${ }^{\text {100\% }}$

 ※

Diution Factor Reover. Fator Tonnage Adiustmen

 2%9.98
0.996

	Pit Shell Number		Rock_tonnes (Mt)		FL_tonnes (MN)	HR_tonnes (Mt)	HC.tonnes (Mt)	Total Processed tonnes (Mt)	$\begin{array}{r} \text { Waste_tonnes } \\ (\mathrm{Mt}) \end{array}$	Strip Ratio	$\begin{array}{\|c\|} \hline \text { Recovered Au } \\ \text { (oz) } \end{array}$	$\begin{gathered} \text { Recovered } \\ \mathrm{Cu}(\mathrm{t}) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Recovered } \mathrm{Ag} \\ \text { (oz) } \end{array} \\ \hline \text { Total } \end{array}$	Revenue SM	Processing Costs SM	Mining cost_SM	NPV_SM	Inc. Npy $\%$	max NPV	Inc Waste	Inc ore	IncsR	\% of max ore	f max rock
Pit 1(1) 1.00\%				${ }_{\text {Total }}^{\text {Tol }}$	Total	Total	Total	Total	- 0		Total	Total	${ }_{\text {Total }}^{49,272}$											${ }_{8}^{8}$
Piti (2) 2.00\%				0.4	0.9	2.7	0.2	4.2	0.5	0.12	40,76	${ }_{3}^{2}, 5695$	${ }^{98,026}$	589.8	${ }^{530.8}$	59.8	${ }_{536.4}$	54.4	6.9\%	129,841	416,447	0.31		
Piti 3(3) 3.00\%		3		,	1.0	2.8	0.2	4	0.6	0.13	${ }^{4.1212}$	${ }^{3,781.5}$	107,737		${ }_{\text {S32,5 }}$		538.0 50		${ }_{6.5 \%}^{6.6 \%}$	${ }^{688,988}$	231,50	0.30	${ }^{31 \%}$	
Pit		4		0.4	1.1	3.0	0.3		0.7		46,388	4,153.4	${ }^{121,541}$	${ }_{5}^{5102.8}$	\$35.1	S11.3	S40.3	52.3	67.6\%	${ }^{121,733}$	${ }^{306,32}$	${ }_{0}^{0.40}$	33\%	
Pit (5) 5.00\%		5		$\stackrel{0.4}{0.4}$	4 4 4	${ }_{3.3}^{3.2}$	0.3 0.3	5.0 5.1 5	0.8	0.16 0.18	49,322	$4,362.2$ 4.459 .6	127,891 133,32	$\begin{array}{r}\text { si08.8, } \\ \hline \text { S12.1 } \\ \hline\end{array}$	$\begin{array}{r}\text { S37.0 } \\ \hline 58.0 \\ \hline\end{array}$	$\underset{\substack{\text { S12.1. } \\ \$ 12.6}}{ }$	S42.1. $\$ 33.0$	51.8 50.9	70.5\%	$\frac{115,573}{8,543}$	$\xrightarrow{258,122}$ 153,072	0.45		
Pit 7 (7) 7.00\%		7		3 0.4	1.2	3.4	0.3	5.3	1.0	0.19	${ }_{52,621}$	4.657.4	135,054	${ }_{5116.3}$	539.5	S13.2	S44.1	S1.0	73.86	100,885		0.5	${ }^{37 \%}$	
Pits (8) 8.00\%		8		0.5	1.3 13	${ }_{3.6}^{3.6}$	0.3 0.3	5.6	1.2	0.21	${ }_{\text {5, } 5 \text { 5,295 }}^{5}$	4,995.9 5.188 .0	${ }_{1}^{1292446}$		¢ $\begin{array}{r}\text { S41.8, } \\ 542.8 \\ \hline\end{array}$	${ }_{\text {S14, }}^{514.5}$	$\underset{\substack{\text { S44.5 } \\ 546.1}}{\text { S }}$	¢ 51.5	-76.3\%	170,855 18931	${ }^{281,596} 9$	${ }^{0.61}$	33\%	
Pitit 99) 9.00\%		10		${ }_{0}^{0.5}$	1.3 1.4 1	${ }_{3.7}^{3.6}$	$\stackrel{0.3}{0.3}$	5.7 5.8	${ }_{1.3}^{1.2}$	$\stackrel{0.22}{0.23}$	56,188 57.177	${ }_{5}^{5,188.0} 5$	${ }_{10}^{142,3,966}$	$\xrightarrow{5125.3}$	($\begin{array}{r}542.8 \\ 543.6\end{array}$	¢	$\underset{546.6}{54.1}$	50.6 50.5	77.0\%		${ }_{9}^{96,8,836}$	${ }_{0.75}^{0.75}$	-39\%	
Pit 111 (11) 11.00\%		11		0.5	1.4	3.8	0.3	6.0	1.5	0.24	58,988	5,440.1	147,988	\$131.5	\$45.0	515.6	547.5	\$0.9	79.5\%	188,797	202, 224	0.74	${ }_{42 \%}$	14\%
Pit 12 (12) 12.00\%		${ }_{12}^{13}$		0.5	[5	3.8	0.3 0.3	6.0	1.5	${ }_{0}^{0.25}$	$\begin{array}{r}59,20 \\ \hline 6,20 \\ \hline\end{array}$	5.474 .9 5.729	1477988	${ }_{\text {S132, }}^{5131}$	$\begin{array}{r}545.3 \\ \hline 56.3\end{array}$	$\frac{515.7}{5161}$	$\begin{array}{r}547.6 \\ \hline \\ \hline\end{array}$	${ }_{\text {S0, }}^{50}$	79.7\%	${ }_{\text {- } 20,385}^{1987}$	-37,190	${ }_{0}^{0.66}$	$\frac{42 \%}{43 \%}$	
Pit 13 (13) 13.00\%		${ }^{13}$		0.5	${ }^{\text {5 }}$	3.9	0.3	6.2	1.6	0.26	${ }_{60,497}$	5.52999	1990,80	${ }_{\text {S134,6 }}$	S46.0)	${ }_{5161}^{517}$	${ }_{548.1}^{58}$	${ }_{\text {S0.5 }}^{5}$	80.6\%	109,477	110,286	0.99	${ }^{43 \%}$	
Pit 14(14) 14.00\%		${ }^{14}$			1.5	4.	0.3	6.4	1.9	0.30	${ }_{6,427}$	5,758,9	${ }_{1}^{154,589}$	S140,8	${ }_{548.1}^{5}$	S17,4.	S49.4. S.	${ }_{51,3}$	${ }^{82,7 \%}$	${ }_{319,314}$	${ }^{280,610}$	${ }_{1.14}$	${ }^{45 \%}$	
Pit 15 (15) 15.00\%		${ }^{15}$		5	1.5 1.5 1.	${ }_{4}^{4.1}$	0.3 0.3	6.5 6 6	2.0			${ }_{\text {5,806,3}}^{5}$	$\xrightarrow{155,255}$	${ }_{\text {S142, }}^{5146}$		${ }_{\substack{517,8 \\ 518, \\ \hline}}$	S49.7 S50.3			- $\begin{array}{r}87,991 \\ 161300\end{array}$	85,105 288.099	1.03 0.68		
Pit ${ }^{\text {Pit (16) } 16.12 .0 \% \%}$		$\stackrel{16}{17}$		0.6	1.6 1.6	${ }_{4.3}^{4.3}$	0.3 0.3	6.8 6.8	${ }_{2.2}^{2.2}$	0.32 0.32	${ }_{6}^{66,793}$	$6,106.9$ $6,175.0$		$\underset{\substack{\text { S1467.7 } \\ 51476}}{ }$	S50.5 S50.8	S11.6 18.8	($\begin{array}{r}\text { S50.3 } \\ 550.5 \\ \hline\end{array}$	$\begin{array}{r}\text { s0.6 } \\ 50.1 \\ \hline\end{array}$		($\begin{array}{r}161,300 \\ 36,696\end{array}$	$\frac{238,099}{48,73}$	0.68 0.75	$\stackrel{47 \%}{47 \%}$	
Pit 18 (18) 18.00\%		18		0.6	$6 \quad 1.6$	4	0.3	6.9	2.3	0.33	66.65	6,274.9	158,085	\$149.2	\$51.5	S19.1	${ }_{550.7}$	50.2	85.0\%	76,406	86,04	0.89	48%	
Pit 19 (19) 19.00\%		19		0.6	${ }^{6} \quad 1.7$	4	0.3	7.1	2.6	0.36	68,402	6,606.5	161,920	S154.1	\$53.4	520.2	551.5	50.7	86.2\%	289,099	288,397	1.21	49\%	
Pit 20 (20) 20.00\%		20		0.6	${ }^{1} \quad 1.7$	4.6	0.3	7.2	2.7	0.37	69,150	6,704.6	162,05	S155.9	\$54.1	520.6	551.7	50.3	86.\%	114,711	93,216	1.23	50\%	19\%
		${ }_{21}^{21}$	10	- 0.6	6 6	${ }_{4.7}^{4.7}$	0.3 0.4	7.3 7.4	${ }_{3.0}^{2.7}$	0.37 0.41	- ${ }_{\text {71,393 }}$	${ }_{\substack{6,7855.6 \\ 6.56}}$	162,066 167,89		\$54.3 $\$ 5.6$	S20.7 521.7	¢S51.8 $\$ 52.5$	50.1 50.7	$\frac{86.86}{87.9 \%}$	27,488 304,285	23,6,65 147308	1.16 2.07	50\%	
Pit 23 (23) 23.00\%		${ }^{23}$		0.6	1.8	4.7	0.4	7.6	3.3	0.44	72,984	7,7038.8	167,905	S164,3	\$57.11	S22.7	553.0	50.5	88,760	294,05	177,812	1.64	52\%	${ }^{21 \%}$
		$\stackrel{24}{25}$	11	$0_{0}^{0.6}$	1.9 1.9	${ }_{4.8}^{4.8}$	0.4	7.6 7.7	3.4 3.5	$\xrightarrow{0.44} 0$	$\begin{array}{r}73,199 \\ 74.288 \\ \hline\end{array}$	$7,086.2$ 7.188 .7	1688.029 16884	${ }_{\text {St64,9 }}^{5167.2}$	$\begin{array}{r}\text { S57.4 } \\ 558.3 \\ \hline\end{array}$	¢ 522.8	S53.0 S53,3	50.1 50.3		- $\begin{array}{r}37,035 \\ 173,767 \\ \hline\end{array}$	${ }_{\text {3, }}^{1029989}$	-	- ${ }_{\text {53\% }}^{53 \%}$	
Pit 26 (26) 26.00\%		26	11		1.9	4.8	0.4	7.7	3.5	0.46	74,371	7,198.7	169,099	\$167.5	\$58.4	523.5	553.4	\$0.0	89,4\%	20,37	13,155	1.55	53\%	
Pit 27 [27) 27.00%		${ }_{28}^{27}$	11		1.9	4.9	0.4	7.8	3.6	${ }^{0.46}$	74,760	7,237.3	${ }_{1}^{169,212}$	S168,4	${ }_{558.7}^{58}$	523,		${ }_{50.1}^{50}$	${ }^{89.6 \%}$	${ }_{\text {5 } 58,781}$	${ }^{67,096}$	0.88	${ }_{54 \%}^{54 \%}$	
		$\stackrel{28}{29}$	11	0.6	6	5.0	0.4	$\begin{array}{r}7.9 \\ 8 . \\ \hline 1\end{array}$	4.0	0.50	76,288 7737 737		1877.477		S60.2		¢54.1.	50,7	${ }^{90.7 \%}$	368,614	${ }_{\text {124,901 }}^{114764}$	$\begin{array}{r}2.58 \\ \hline 216\end{array}$	-	- 2 23\%
		29 30	${ }_{12}^{12}$	- $\quad 0.7$	7 7	5.0 5.1	0.4 0.4	$\begin{array}{r}8.1 \\ 8.2 \\ \hline\end{array}$	${ }_{4.5}^{4.2}$	0.52 0.54	${ }^{77,574}$	$7,7,53,5$ $7,88.5$	191,86888	${ }_{\substack{5176.1 \\ 5179.4}}^{\text {S }}$	¢S61.6. 56.9	¢	$\begin{array}{r}\text { 544. } \\ \hline 54.9\end{array}$	50.4 50.4	${ }_{\text {913. }}^{\text {91. }}$	$\begin{array}{r}248,271 \\ 262122 \\ \hline\end{array}$		${ }^{2.15}$	- ${ }_{\text {57\% }}^{5 \%}$	24\%
Pit 313131) 31.00\%		${ }^{31}$	12	0.7	7-2.1	${ }_{5}^{5.1}$	0.4	${ }_{8}^{8.3}$	4.5	0.55	78,736	8,031.0	195,047	S18000	${ }_{\substack{\text { S63,2 } \\ 564}}$	S26.6	${ }_{\substack{\text { S55.0 } \\ \$ 552}}$	$\begin{array}{r}50.0 \\ 503 \\ \hline 0 .\end{array}$	-92.16\%	- $\begin{array}{r}32,982 \\ \text { 208311 }\end{array}$	$\begin{array}{r}39,881 \\ 88479 \\ \hline\end{array}$	0.83 2.8 1	- ${ }_{5}^{58 \%}$	25\%
Pit $32(32) 32.00 \%$		${ }_{33}^{32}$	$\stackrel{13}{13,}$	0.7	7 7	5.2	0.4 0.4	${ }_{8.4}$	4.8	0.57 0.57	79,710 80,105	$8,132.6$ $8,207.1$	197,563 19994	S182.3,	S64,0. 564.4	$\underset{\substack{527.2 \\ 527.5}}{ }$	\$ $\begin{array}{r}\text { \$55.2 } \\ \$ 5.3\end{array}$	50.3 50.1	- ${ }_{\text {92, } 2.7 \%}^{92 \%}$		84,790 54,71	2.46 1.74	[${ }_{\text {5\%\% }}^{58 \%}$	25\%
Pit $34(34) 34.00 \%$		${ }^{34}$	13	- 0.7	$7 \quad 2.2$	5.2	0.4	5	5.0	0.59	80,977	8,408.2	200,067	\$186.0	S65.7	528.2	${ }_{555.6}$	50.2 50.2	${ }^{93.1 \%}$	211,788	106,046	${ }_{2} \mathbf{2} .00$	59\%	26\%
Pit 35 (3) 35. 35\%		${ }^{35}$	13.	0.7	$7 \quad 2.2$	5.3	0.4	8.6	5.1	0.60	81,352	8,499.5	200,241	\$187.2	\$66.2	528.5	555.7	50.1	93,36	89,151	66,914	1.33	59\%	26\%
Pit $36(36) 36.0 .00 \%$		${ }^{36}$	13	- 0	7- ${ }^{2.3}$	${ }_{5}^{5.3}$	0.4	8.7	5.3	0.61	${ }^{82,013}$	8.567.4	201,074	5188.7	${ }_{\text {S66.7 }}^{565}$	529.0	¢55.8.	S0.2	$\frac{93.50}{936 \%}$	122,000	89,629 3,295	1.58	60\%	27\%\%
		${ }_{38}^{37}$	${ }_{14}^{14}$	0.7	(${ }^{2.3}$	${ }_{5.4}^{5.4}$	0.4	${ }_{8.8}^{8.7}$	${ }_{5.4}^{5.3}$	${ }_{0.61}^{0.61}$	${ }^{82,288} 8$	8.596 .7 8.53 .6	201, 018 20,589	$\begin{array}{r}\text { s189,2 } \\ \hline 190.0\end{array}$	S66.9 567.3	¢ $\begin{gathered}\text { S29.1. } \\ 529.4\end{gathered}$	¢55.9.9	50.0 50.1	- ${ }_{\text {93, }}^{93.7 \%}$	$3,8,63$ 72,59	38,25 56,687	1.04	61\%	
Pit 39 (39) 39.00\%		39	14.	0.7	$7 \quad 2.3$	5.4	0.4	8.8	5.4	0.62	82,64	8,679.5	201,758	S190.4	567.5	529.5	556.0	50.0	93.7\%	38,063	26,55	1.43	61\%	
Pitit 4040140.000%		${ }_{40}^{40}$	${ }_{14}^{14}$	0.7		5.5.			5.8			8.806.9	208, 142							344,394				
		${ }_{42}^{41}$	${ }_{14}^{14}$	\% $\quad 0.7$	7 7	${ }_{5.5}^{5.5}$	0.4 0.4	8.9 ${ }^{8.9}$	5.8 5.9	0.65 0.66	84,128 84,370	8.8834 .0 $8,888.7$	208,142 208,188	¢ ${ }_{\text {S193, }}^{519.5}$	S68.6 569.0	530.7 530.9	\$55.3	$\begin{array}{r}50.0 \\ 50.0 \\ \hline\end{array}$	${ }_{\text {a }}^{\text {94,4\% }}$	${ }_{\text {6, }}^{6,9,666}$	30,177 43,373	${ }_{1}^{2.31}$		28\%
Pit 43 (43) 43.00\%		${ }^{43}$	14	0.7	7- ${ }^{2.4}$	5.5	0.4	9.0	5.9	0.66	84,534	8,943,9	208,191	S195.1	569.3		556.4	50.0	94.5\%	51.769	31.645	1.64	62\%	
Pit 44(44) 44.00\%		44	15	0.7	$7 \quad 2.4$	${ }_{5}^{5.5}$	0.4	9.0	6.0	0.66	84,600 88,903	9,009.5	208,191 2085 295	¢ ${ }_{\text {S195,66 }}^{5196}$	$\begin{array}{r}\text { S69.6 } \\ 590 \\ \hline\end{array}$	$\underset{\substack{\text { S312, } \\ \$ 315}}{ }$	($\begin{array}{r}\text { S56.4. } \\ \$ 56.5 \\ \hline\end{array}$	$\begin{array}{r}50.0 \\ 500 \\ \hline\end{array}$	-945\%	36,025 110,00	$\begin{array}{r}\text { 23,980 } \\ 5 \\ 5,595 \\ \hline\end{array}$	1.50		229\%
${ }^{\text {Pit } 45(45) 4.500 \%}$ Pit 46 (46) 46.00%		${ }_{46}$	$\stackrel{15}{15}$	0.7 0.7	7 7	${ }_{5}^{5.6}$	0.4 0.4	${ }_{9.1}^{9.1}$	${ }_{6.1}^{6.2}$	0.67 0.68	84,933 85,47	9,000.9	208,25 208,31	s196.6 1978	570.0 500.4		($\begin{array}{r}\text { \$56.5 } \\ \$ 56.6\end{array}$	s0.1 50.1					$\underset{\text { 63\% }}{66 \%}$	
Pit 47 (47) 47.00\%		${ }^{47}$	15		2.4	5.7	0.4	9.2	6.4	0.69	85,980	9,193,4	209,252	\$199.0	570.8	\$32.4	\$56.7	50.1	95.0\%	152,988	73,219	2.09	64\%	
Pit 48 (18) 48.00\%		${ }^{48}$	16	0.7	$7 \quad 2.5$	5.7	0.4	9.3	6.9	0.75	87,627	9,345.3	216,454	5202.7	572.0		\$57.0	50.3	95.5\%	560,158	123,708	4.53	64%	${ }^{31 \%}$
Pit 49 (49) 49.00\%		49		0.7	7 ${ }^{2.6}$	5.8	0.4	${ }^{9.5}$	7.4	0.78	${ }^{88,676}$	9,711.5	219,235	${ }_{5206,6}$	573.7	\$35.1	${ }_{557,3}$	S0.3	96.0\%			3.11	${ }_{65 \%}^{65 \%}$	
${ }^{\text {Pit } 50(50) ~ 50.00 \% ~}$		50 51 51	${ }_{17}^{17}$	0.7 0.7	7 7	5.8 5.9	0.4 0.4	${ }_{9}^{9.5}$	${ }_{7}^{7.6}$	0.80 0.81	89,105 89,677	9,886,9	222,041 2222427 220	5207.8 520.0	S74.1.	¢ ${ }_{5}^{535.5} 5$	$\underset{557.4}{5}$	S0.1 50.1	$\frac{96.10}{96.2 \%}$	${ }_{1}^{1685,065}$	${ }_{8}^{41,393}$	4.06 1.86	$\frac{66 \%}{66 \%}$	
Pit 52 (5) 52.00%		5	17	0.7	7 - 2.6	5.9	0.4	9.6	7.8	0.81	${ }^{89,703}$	9,842.70	222,429	5299.1	574.6	536.1	${ }_{5}^{557.5}$	50.0	96.2\%	16,486	10.523	1.57	66\%	
		${ }_{55}^{53}$	${ }_{17}^{17}$	- 0.7		5.9	0.4	9.7	7.9	${ }_{0.81}^{0.81}$	${ }^{90,187}$	${ }_{\text {9,9,965.0 }}$	${ }_{222,543}^{22,54}$	¢ ${ }_{\text {S210.6 }}$	$\stackrel{575.3}{575.5}$	¢356.6	$\begin{array}{r}\text { S557.5 } \\ \hline 557\end{array}$	s0.1 50.0	¢96.3\% 9	[$\begin{array}{r}129,612 \\ 47,63 \\ \hline\end{array}$	$\xrightarrow{101,664}$	1.27 1.62	${ }_{67 \%}^{67 \%}$	
Pit 57 (57) 57.00\%				0.7	$7 \quad 2.7$	6.0	0.4	9.8	O	0.82	90,488	10,024,2	222,55	5211.5	575.8		557.6		96.4\%	50,062	26,920	1.86	67\%	
Pitits 5 (5) 58.00\%		58 59 59	${ }_{17}^{17}$	${ }^{0.7}$		6.0	${ }_{0}^{0.4}$	${ }_{9.8}^{9.8}$	${ }_{8.1}^{8.0}$	0.82	${ }_{90,683}^{90,69}$	$10,074,7$ $10,096.6$	$\underset{ }{222,552}$	¢S212.0. 52123	576.0 576.1	$\stackrel{537.1}{537.2}$	($\begin{array}{r}\text { S57.6.6 } \\ \hline 57.6\end{array}$	s0.0 50.0	96.4\% 9	53,600 27,898	31,723 15,897	${ }_{1}^{1.75}$	68\%	
Pit 600 (60) 60.00%		60	18.	0.7	$\begin{array}{ll}7 & 2.7\end{array}$	6.0	0.4	9.8	8.1	0.83	90,883	10,097.6	${ }^{222,622}$	5212.6	\$76.2	537.4	557.6	50.0	96.5\%	58,909	33,175	1.78	${ }^{68 \%}$	
Pititil(61) 61.00%		${ }^{61}$	18	- 0	 17	6.1	0.4	9.9	8.5	0.85	91,769	10,172.4	226,206	S221,5	576.9	538.2	${ }_{5557}^{5}$	50.1	96,7\%	-331,302	85,256	- 3.89	69\%	
Pit 621 (62) 62.00%		${ }_{6}^{62}$	18.	5	7 1.7 1.7	6.1	0.4	10.0	${ }^{8.6}$	${ }^{0.86}$	${ }^{92,2029}$	${ }^{10,355.9}$	226,332	${ }_{\substack{5216,1 \\ 51263}}^{5}$	S77.7	¢ 538.7	¢557.8 5578	S0.0		162,582	$\begin{array}{r}62,280 \\ \hline 2888 \\ \hline 18\end{array}$	2.61		
Pit 641 (64) 64.00\%		${ }_{64} 6$	19	$5 \quad 0.7$	$7{ }^{7}-{ }^{2.8}$	6.2	0.4	10.2	${ }_{9}^{9.4}$	${ }_{0}^{0.93}$	${ }^{93,3,969}$	${ }^{10,5656} 10.54,3$	${ }_{2}^{236,544}$	${ }_{\text {S }}^{5220,5}$	${ }_{5}^{579.3}$		¢55.8	50.0 50.2	${ }_{\text {96.7.2\% }}^{96 \%}$	- $\begin{array}{r}38,055 \\ 795,302 \\ \hline\end{array}$	${ }_{\text {26,882 }}{ }^{26,383}$	1.42 5.19		
Pit 65 (65) 65.00\%		${ }^{65}$	20	0.7	$7 \quad 2.8$	6.2	0.4	10.3	9.7	0.95	94,379	10,775, ${ }^{\text {a }}$	${ }^{236,582}$	${ }_{5}^{5222.5}$	\$80,2,	541.5	${ }_{\substack{558.1 \\ 58.3}}^{5}$	\$0.12	973\%	260.511	${ }^{94,836}$	2.75	${ }^{71 \%}$	
${ }^{\text {Pit } 666666666.00 \%}$ Pit 68 (68) 68.00%		66 68	${ }_{21}^{21}$	- 0.8	8 2.9 ${ }_{8}^{8}$ 2.9 0	${ }_{6.4}^{6.3}$	0.4 0.4		10.5 10.7	${ }_{1}^{1.01}$	${ }_{9}^{96,7,293}$	$\xrightarrow{10,978.0} 11.014 .6$	236,623 288,19	年5227.6 5228.8	($\begin{array}{r}582.3 \\ \$ 82.7\end{array}$	543.6 544.2	¢588.3	S0.2 S0.11	${ }_{\text {97, }}^{97.7 \%}$	$\xrightarrow{807,122}$ 23, 272		4.13 4.34	73\%	
Pit $69(699$ 69.00\%		69	21	0.8	$8 \quad 2.9$	6.4	0.4	10.6	11.1	1.05	98,34	11,092.9	241,530	5230.5	583.3	545.0	\$58.4	50.1	978\%	${ }_{341,132}$	45,45	7.47	${ }^{73 \%}$	
		${ }_{71} 7$	${ }_{22}^{22}$	$\stackrel{0.8}{0.8}$	8 8	${ }_{6.5}^{6.5}$	0.4 0.5	10.7 10.8	${ }_{11.5}^{11.6}$	$\xrightarrow{1.08}$	${ }^{99,2726}$		${ }^{2414,803}$		$\begin{array}{r}\text { ¢88,3 } \\ \hline 584.5 \\ \hline\end{array}$	¢ ${ }_{\text {S46.1. }}^{546}$	$\begin{array}{r}\text { S58.5 } \\ \hline 588.5 \\ \hline\end{array}$	50.1 50.0	-98.0\% 90.0	$\underset{\substack{365,777 \\ 159734}}{1}$	${ }_{\text {118,750 }}^{\text {91,022 }}$	- ${ }_{\text {3.34 }}^{1.71}$	${ }^{749 \%}$	
Pit 72 (72) 72.00\%			22	0.8	$8 \quad 3.0$	6.6	0.5	10.8	11.8	1.9	100,052	11,165.4	242,168	5234.3	\$84.6	546.9	${ }_{558.5}^{5}$	50.0	98.0\%	127,070	30.826	4.12	75\%	
${ }^{\text {Pit }}$		${ }_{75}^{73}$	${ }_{23}^{23}$	0.8 0.8	8 8 8.0 3.1	${ }_{6.6}^{6.6}$	0.5 0.5	10.9 11.0	12.4 12.6	${ }_{1.14}^{1.14}$	${ }^{1010,343} 10$	${ }^{11,1,562.2}{ }^{11,53,8}$	249,996 250,021	$\underset{\substack{5237.5 \\ 523,2}}{ }$		¢48.5	¢S58.6. 58.7	s0.1 50.0	988.3\%	661,30 140,036	$\frac{103,93}{96,29}$	6.36 1.50	75\%	
Pitit 7 (776) 7.00\%		76	23	0.8	$8 \quad 3.1$	6.6	0.5	11.0	12.6	1.14	101,705	11,552.1	250,034	5239.4	586.9	\$49.2	${ }_{558.7}$	50.0	98.36	38,954	19,377	2.01	76\%	
		${ }_{77}^{78}$	${ }_{46}^{46}$	${ }^{1.5}$		8.1	0.6		$\begin{array}{r}33.0 \\ 33, \\ \hline 1\end{array}$	2.41 2.41	1445,838	\%$13,360.2$ 13,3624 1	${ }_{\text {441,521 }}^{401253}$	S325.9					$\frac{99.7 \%}{997}$	$\begin{array}{r}20,426,192 \\ \hline 108565\end{array}$			$\xrightarrow{\text { 95\% }}$	
Pit 99 (80) 80.00\%		79	47	1.	${ }^{5}$ 5 ${ }^{\text {3.5 }}$	8.2	0.6	13.8	${ }^{33.3}$	2.41	${ }^{14646,59}$	- $13,3,382.2$	${ }_{442,203}^{44}$	${ }_{\text {¢ }}^{5327.1}$	${ }_{5113.6}$	597.9 989	${ }_{5}^{559.5}$	50.0 50.0	99.7\%	- $\begin{array}{r}108,265 \\ 135,206 \\ \hline\end{array}$	${ }^{50,073} 5$	${ }_{2}^{2.56}$	- ${ }_{\text {95\% }}^{\text {95\% }}$	
Pitit 818.828 82.0\%\%		${ }_{81}^{81}$	48	1.5	5 5	8.2 8.8 8	${ }^{0.6}$	$\begin{array}{r}13.9 \\ 13 \\ \hline\end{array}$	34.2	2.46	${ }^{148,558}$	${ }^{13,425,3}$	${ }_{4}^{488,452}$	5330.9 5321	S114.8	S100.1 S002	¢59.6	¢0.1	99.8\%	- $\begin{array}{r}\text { 910,796 } \\ \hline 26911\end{array}$	114,764	7.94 216	99\%	
		${ }_{83}^{82}$	${ }_{49}^{48}$	${ }_{1}^{1.5}$	${ }^{5}$	${ }_{8.3}^{8.2}$	0.6	14.1	34.2 35,1	${ }^{2.50}$	${ }_{1}^{1450,931}$		${ }_{451,242}^{48,53}$	${ }_{\text {S331., }}^{53}$	${ }_{\text {S } 5116.1}^{\text {S12. }}$	$\xrightarrow{5002}$		50.0 50.1	${ }^{\text {9,9.9\% }}$	${ }_{93,5,511}^{26,41}$	${ }_{\text {12,244 }}^{13,24}$	${ }^{2.96}$	97\%	
Pit 85 (86) 86.00\%		${ }^{85}$	49	1.5	5 ${ }^{3.6}$	8.3	0.6	${ }_{14.1}^{14}$	35.2	2.50	150,756	13,534.5	${ }_{4}^{452.016}$	${ }_{\text {S }}^{5335.2}$	${ }_{\text {S111.3 }}^{511}$	${ }_{\text {S102. }}$	\$59.6	50.0	999\%6	54,394	25,178	2.16	97\%	${ }^{\text {95\% }}$
		87 88 8	${ }_{49}^{49}$	5 ${ }^{1.5}$	5 15 1	${ }_{8.4}^{8.4}$	0.6 0.6	$\xrightarrow{14.1}$	$\begin{array}{r}35.3 \\ 35.4 \\ \hline\end{array}$	2.50	${ }_{\text {10,981 }}^{151,18}$	- $13,5727.2$	${ }_{4}^{452,3,374}$	¢ ${ }_{5}^{5335.8}$	${ }_{\text {S116.6 }}^{5116.7}$	S102.8. 5103.0		s0.0 50.0	999.9\%	${ }_{\text {7 }}^{7,9,921}$	${ }_{\text {cher }}^{34,564}$	${ }_{2.34}^{2.87}$	988\%	$\xrightarrow{\text { 95\%\% }}$
Pit 90 (91) 91.00\%		90	50	1.6	6 -3.6	8.4	0.7	${ }^{14,3}$	35.9	2.52	${ }^{152,374}$	13,679.0	452,374	5388.7	5117.8	S104.4	\$59.7	50.0	100.0\%	555.86	95,972	5.79	99\%	
		${ }_{93}$	${ }_{51}$	${ }_{1.6}^{1.6}$	${ }^{1.6}$	${ }_{8.5}^{8.5}$	0.7	${ }_{14.4}^{14.4}$	${ }_{3}^{37.1}$	${ }_{2}^{2.58}$	${ }_{1554,730}$	13,720.0.7	${ }_{459,589}$	${ }_{\text {¢ }}^{5342.29}$	$\frac{5119.6}{519.2}$	${ }_{\text {S }}^{51057}$	${ }_{5}^{599.7}$	50.0	100.0\%	${ }_{4}^{69,5,235}$	4,5,701	$\begin{array}{r}\text { 9.4.40 } \\ \hline\end{array}$	99\%	- ${ }_{\text {98\% }}^{99 \%}$
Pit 959 96) 96.00\%		9			6 -3.6			14.4			154,823	${ }^{13,723,8}$	459.589	${ }_{5343.1}$	S119.2	S107.1	599.7	50.	100.0\%	38,01	17,672	2.16	100\%	
		99	${ }_{51}^{51}$	- ${ }^{1.6}$	${ }^{1.6}$	${ }_{8.5}^{8.5}$	0.7	${ }_{14.5}$	${ }^{37.4}$	$\underline{2.59}$	155,004	13,765.8	460,204	${ }_{5334.3}$	${ }_{\text {S119.6 }}$	$\stackrel{\text { S1077.9 }}{5107}$	${ }_{5}^{559.7}$	50.0	100.0\%	${ }^{225,7369}$	${ }^{43,2958}$	${ }^{5.728}$	100\%	100\%

Diution Factor Reover．Factor Tonnage Adiustmen

2\％
98\％
0.996

\begin{tabular}{|c|}
\hline \& Pit Shell Number \& \[
\begin{aligned}
\& \text { Rock_tonnes } \\
\& (\mathrm{Mt})
\end{aligned}
\] \& AG tomes（ \(M\)（t） \& （1）FLLtones（MT） \& HR＿tonnes
（Mt） \& HC＿tones（ME） \& Total Processed
tonnes（Mt） \& \[
\begin{array}{r}
\text { Waste_tonnes } \\
(\mathrm{Mt}) \\
\hline
\end{array}
\] \& Strip Ratio \& \[
\begin{array}{|c|}
\hline \text { Recovered Au } \\
(\mathrm{oz})
\end{array}
\] \& \[
\begin{gathered}
\text { Recovered } \\
\mathrm{Cu}(\mathrm{t})
\end{gathered}
\] \& \[
\begin{array}{|c|c|}
\hline \text { Recovered } \mathrm{Ag} \\
\text { (oz) }
\end{array} \mathrm{R}
\] \& Revenue SM \& Processing Costs SM \& Mining Cost＿SM \& NPV＿SM \& Inc．NPV \& \％of max NPV \& Waste \& Inc ore \& SR \& \％of max ore \& \％of max rock \\
\hline Piti 1（1）1．00\％ \& \& \& \begin{tabular}{l}
4．3 \\
\hline
\end{tabular} \& Total

0 \& $\begin{array}{r}\text { Total } \\ \hline 2.5 \\ \hline\end{array}$ \& Total \& \& 0.4 \& 0.10 \& ${ }_{\text {Total }}^{\text {To，017 }}$ \& ${ }_{\text {Totata }}^{\text {T，}}$ \& $$
\frac{\text { Totatal }}{56,500}
$$ \& \& \& \& \& \& \& \& \& \& \&

\hline Piti（2）2．00\％ \& \& \& 4．8 0.4 \& ． 4 1．0 \& 2.7 \& 0.2 \& 4.3 \& 0.5 \& 0.12 \& 45，758 \& ＋4，234，3 \& ${ }_{10,927}$ \& \＄102． \& ${ }_{5}^{532.9}$ \& \＄11．1 \& ${ }_{542.7}$ \& 55.1 \& 60．5\％ \& 136，383 \& 441,225 \& 0.31 \& \&

\hline Piti 3（3）3．00\％ \& \& \& 5.20 .4 \& | 4 |
| :--- |
| 1.1 | \& 2.9 \& 0.2 \& \& 0.6 \& 0.14 \& 49，024 \& 4，625．9 \& 125,815 \& \＄110．0 \& \＄35．3 \& \& S45．2 \& \& 64．0\％ \& 98，091 \& 301，831 \& \& \&

\hline Pit（4）4．00\％ \& \& \& | 5.7 | 0.4 |
| :--- | :--- | \& | ． 4 |
| :--- |
| 1.2 | \& 3.0 \& 0.3 \& \& 0.7 \& 0.15 \& 52，636 \& 4，948．6 \& 135，320 \& \＄118．0 \& ${ }_{537.8}$ \& \＄12．9 \& ${ }_{\text {S }}^{547.6}$ \& ¢ \& 6．5\％ \& 114，294 \& 209，455 \& 0.38 \& \&

\hline Pit（5）5．00\％ \& \& \& $5.0 \bigcirc 0.4$ \& ${ }_{4}{ }^{1.3}$ \& \& 0.3 \& \& 0.9 \& \& \& 5，210．6 \& \& \& \& \& \& \& \& 118，104 \& \& 0.45 \& \&

\hline Piti6（6） 6.00% \& \& \& 6．4 0.4 \& $4{ }^{4} \times 1.3$ \& 3.4 \& 0.3 \& \& 1.0 \& \& \& 5．461．1 \& 148,49 \& \＄130．0 \& \& \& \& S1．4 \& ${ }^{72.2 \%}$ \& 115，915 \& 224，370 \& 0.52 \& \&

\hline Pit 7 （7）7．00\％ \& \& \& 6．6 0.5 \& ． 5 － 1.4 \& 3.5 \& 0.3 \& 5.5 \& 1.1 \& 0.19 \& 59，478 \& 5．624．9 \& $\stackrel{\text { 150，612 }}{152}$ \& ${ }_{\text {S133，5 }}$ \& S42．6． \& ${ }_{5151.1}^{515}$ \& ${ }_{\substack{\text { S51．，} \\ 513}}$ \& $\begin{array}{r}50,9 \\ 50 \\ \hline 15\end{array}$ \& 7．5．5\％ \& 93，500 \& ${ }_{\text {141，612 }}^{1293}$ \& －${ }^{0.66}$ \& －36\％ \&

\hline Piti（8）8．00\％ \& \& $\stackrel{8}{9} \quad \stackrel{7}{7}$ \& | 7.0 |
| :--- |
| 7.3 |
| 0.0 |
| 0.5 |
| 0.5 | \& \& 3.6

3.7 \& 0.3

0.3 \& | 5.8 |
| :---: |
| 5.9 | \& $\frac{1.2}{13}$ \& 0．21 \& 62.09

63,632 \& $5,985.9$
$6.6,64.6$ \& 155，263

160.040 \& | S139．8， |
| :--- |
| 1436 | \& S44．9，

546.0 \& \& ¢55．3， \& S1．5 \& | 75.6% |
| :--- |
| 76.9% | \& 142，570 \& ［ $\begin{array}{r}24,323 \\ 133909\end{array}$ \& \[

0.57
\] \& \&

\hline Pit 10 （10）10．00\％ \& \& $10 \quad 7$ \& | 7．5 |
| :--- | \& ． 5 1．5 \& ${ }_{3} 3$ \& 0.3 \& 6.1 \& 1.4 \& 0.23 \& 6，8888 \& 6，36，8 \& 163，93 \& \＄146．9 \& \＄47．1 \& \＄17．2 \& \＄55．0 \& 50．7 \& 78．0\％ \& 98，888 \& 157，499 \& ${ }^{0.63}$ \& 40\％ \&

\hline \& \& 11 \& $\begin{array}{r}7.7 \\ \hline 18 \\ \hline 18\end{array}$ \& \& | 3.8 |
| :---: |
| .8 | \& 0.3

0.3 \& ${ }_{6}^{6.2}$ \& 1.5 \& 0．24 \& ${ }^{66,105}$ \& ${ }_{6}^{6.429,6}$ \& 164，073 \& ${ }_{\text {S1493，}}^{5}$ \& $\begin{array}{r}547.9 \\ 5493 \\ \hline\end{array}$ \& S17．6 \& ¢55．5 \& S0．5 \& ${ }^{78.7 \%}$ \& $\frac{87,646}{54,185}$ \& \& － 0.89 \& ${ }_{\text {40\％}}^{418}$ \& －$\quad 14 \%$

\hline Pit 13 （13）13．00\％ \& \& ${ }^{13}$ \& | 7． |
| :--- |
| .5 | \& ． $5 \quad 1.6$ \& 4.1 \& 0.3 \& 6.6 \& 1.9 \& 0.29 \& 70，008 \& 6，736．8 \& 167，97 \& \＄158．3 \& 550.8 \& \＄19．4 \& ${ }_{557.4}$ \& ${ }_{51.6}$ \& 813\％ \& 332，377 \& 317，559 \& ${ }^{1.05}$ \& 43\％ \&

\hline Pit $14(14)$ 14．00\％ \& \& 14 \& $9.1 \quad 0.6$ \& ${ }^{6} \quad 1.7$ \& 4.3 \& 0.3 \& 6.9 \& 2.2 \& 0.31 \& 73，154 \& 7，157．6 \& 174，400 \& 5165.4 \& 553，3 \& 520.7 \& 558.7 \& 51．3 \& 83．1\％ \& 270，43 \& 318，172 \& 0.85 \& 45\％ \&

\hline Pit 15 （15）15．00\％ \& \& 15 \& $9.1 \quad 0.6$ \& ${ }^{1.6}$ \& 4.3 \& 0.3 \& 6.9 \& 2.2 \& 0.32 \& 73，474 \& 7，23，4 \& 174，641 \& 5166．3 \& ${ }_{5553} 5$ \& \& \＄58．8 \& 50．2 \& 88．4\％ \& ${ }^{36,962}$ \& 39，919 \& ${ }^{0.93}$ \& \&

\hline Pit 16 （16）16．00\％ \& \& 16 \& $9.3 \quad 0.6$ \& ${ }^{1.6}$ \& 4.3 \& 0.3 \& 7.0 \& 2.3 \& 0.32 \& 73，929 \& $7,78.3$ \& 175，026 \& 5167．8 \& \＄54．3 \& 521.2 \& 559.0 \& 50.2 \& 83．7\％ \& ${ }^{53,632}$ \& 69，728 \& 0.77 \& 46\％ \&

\hline Pit 17 （17）17．00\％ \& \& ${ }_{17}^{17}$ \& $0.5 \quad 0.6$ \& ${ }^{6}$ ． 1.8 \& 4.4 \& 0.3 \& 7.1 \& 2.4 \& 0.33 \& 74，789 \& 7，499．6 \& 175，847 \& ${ }_{\text {St16，}}$ \& \& \＄21．6 \& \＄59．4． \& S0．3 \& ${ }^{8.19}$ \& 9，9878 \& 96，716 \& ${ }^{1.03}$ \& \&

\hline Pit 18 （18）18．0\％\％ \& \& 18 \& $0.9 \quad 0.6$ \& ${ }^{6}$ 1．9 \& 4.5 \& 0.3 \& \& 2.6 \& 0.36 \& \& 7，780．9 \& 180，114 \& S174．8 \& \＄56．8． \& \＄22．8 \& S60．2 \& 50．8 \& 8．3\％ \& 269，369 \& $\xrightarrow{220,122}$ \& $\frac{1.22}{104}$ \& ${ }_{\text {48\％}}^{488}$ \&

\hline \& \& 19

20 \& （10．1 \& ［6 \& 4.6 \& 0.3 \& 7.4 \& ${ }_{2}^{2.7}$ \& － $\begin{aligned} & 0.37 \\ & 0.39\end{aligned}$ \& $\xrightarrow{77,162}$ \& \begin{tabular}{l}
7.830 .9

\hline 806

 \& 180，249 \& S176．00 \& \& S23．1 \& ${ }_{\text {S60．4，}}^{5}$ \& ${ }_{\text {S0．2 }}^{50}$ \& 85．5\％ \& \&

70,155

10938

\hline

 \&

1.04

1.12

\hline
\end{tabular} \& ${ }_{48 \%}^{48 \%}$ \& －${ }_{\text {19\％}}^{19 \%}$

\hline Pit ${ }^{\text {Pit } 20120212120.000 \%}$ \& \& ${ }_{21}^{20} \quad \frac{10}{11}$ \& （10．5 ${ }^{1.1}$ \& \& ${ }_{4}^{4.8}$ \& 0．4 \& | 7.5 |
| :--- |
| 7.8 | \& ${ }_{3.3}^{3.0}$ \& 0．39 \& ${ }_{\text {7，}}^{7,595}$ \& | $8,061.8$ |
| :--- |
| $8,34.0$ | \& | 1812,78 |
| :--- |
| 188,876 | \& S180．3

5188.0 \& $\begin{array}{r}\text { S55．9 } \\ \hline 56.8 \\ \hline\end{array}$ \& ¢ $\begin{array}{r}524.0 \\ 555.4 \\ \hline\end{array}$ \& ¢ $\begin{array}{r}\text { S61．0 } \\ 561.8\end{array}$ \& 年 | 50.6 |
| :---: |
| 50.8 | \& \& \& ${ }^{19993398}$ \& ［ $\begin{aligned} & 1.72 \\ & 1.67\end{aligned}$ \& ${ }_{\text {4 }}^{49 \%}$ \& －

\hline Pit $22(2)$ 2）22．00\％ \& \& ${ }^{22} \quad 11$ \& 11．2 0.6 \& ${ }^{6}$ ． 2.0 \& 4.8 \& 0.4 \& 7.8 \& ${ }^{3} 4$ \& 0.43 \& ${ }^{81,588}$ \& ${ }_{\text {8，}}^{8,488.2}$ \& 188，876 \& 5188．9 \& ${ }_{561.3}$ \& \& ${ }_{561.9}$ \& | 50．1 |
| :--- | \& ${ }^{878 \%}$ \& ${ }^{43,293}$ \& 52,420 \& 析 \& 51\％ \&

\hline Pit ${ }^{\text {Pit } 23(23) 23.300 \%}$ \& \& ${ }^{23} \quad 11$ \& 11．2 0.6 \& $6 \quad 2.0$ \& 4.8 \& 0.4 \& 7.8 \& ${ }^{3.4}$ \& 0.43 \& ${ }_{81,687}$ \& 8，465．1 \& 186，886 \& 51877．3 \& S61．4 \& \＄25．7 \& S62．0 \& 50.0 \& 878\％ \& 22，210 \& 17，415 \& 1.28 \& 51% \& 221\％

\hline \& \& $\begin{array}{r}24 \\ { }_{25} \\ \\ \hline\end{array}$ \& （1．6 ${ }^{\text {11．6 }}$ \& －6 \& 4.9 \& 0．4 0.4 \& 8.0 \& 3.6

3.6 \& 0．45 \& ${ }_{\text {83，}}^{83,188}$ \& 8，702．21 \& | 188,115 |
| :--- |
| 188,197 | \& ¢ $\begin{array}{r}\text { ST191．1 } \\ \text { S1914 }\end{array}$ \& 563.0

563.1 \& ${ }_{\substack{526.6 \\ 526.7}}$ \& S62．4

S62． \& $\begin{array}{r}50.5 \\ 50.0 \\ \hline\end{array}$ \& \& \& | 177，184 |
| :--- |
| 20983 | \& －${ }_{1.127}^{1.27}$ \& 年52\％ \& 21\％

\hline Pit 26 （26）26．0\％ \& \& 26 \& 0.6 \& ． $6 . \quad 2.1$ \& 4.9 \& 0.4 \& 8.1 \& 3.7 \& 0.46 \& 8，5，46 \& 8，74．5 \& 188，218 \& 5192．0 \& 568.3 \& 526.9 \& ${ }_{562.6}$ \& S0．1 \& ${ }_{\text {88，}}^{\text {80\％}}$ \& 42，702 \& 30，647 \& 1.39 \& 52\％ \& 22\％

\hline Pit 27 （27）27．00\％ \& \& ${ }_{27} 27$ \& $12.9 \quad 0.7$ \& ${ }^{2} \quad 2.3$ \& 5.1 \& 0.4 \& 8.4 \& 4.4 \& 0.53 \& 87,26 \& 9，444．0 \& 215，530 \& 5202.6 \& 567.0 \& 529.5 \& 564.0 \& 51.4 \& 90．7\％ \& 757，640 \& 375，079 \& － 2.02 \& 55\％ \&

\hline Pit 28 （28）28．0\％\％ \& \& ${ }_{28}^{28} \quad 13$ \& －13，1 0.7 \& －7 ${ }^{2.3}$ \& 5.2 \& 0.4 \& 8.5 \& 4.6 \& 0.54 \& 87,778 \& 9，597．9 \& 217，024 \& 5204．5 \& 567．8 \& \& 564.2 \& 50.2 \& 91．0\％ \& 113，789 \& 77，39 \& － 1.47 \& 55\％ \&

\hline Pit ${ }^{\text {Pa }}$（292）29．00\％ \& \& ${ }^{29} \quad 13$ \& | 13.2 | 0.7 |
| :--- | :--- |
| 18 | | \& $7 \quad 2.4$ \& 5.2 \& 0.4 \& ${ }^{8.6}$ \& 4.6 \& 0．54 \& ${ }^{88,044}$ \& 9，688．0 \& 218，859 \& ${ }_{5}^{5205.5}$ \& $\begin{array}{r}5688.2 \\ \text { S0，} \\ \hline\end{array}$ \& \＄30．2） \& \＄64．31 \& $\begin{array}{r}50.1 \\ 50 \\ \hline\end{array}$ \& ${ }^{91.11^{1 / 2}}$ \& ${ }^{71,586}$ \& ${ }_{\text {42，585 }}$ \& | 1.68 |
| :---: |
| 1.28 | \& 55\％ \& ${ }^{24 \%}$

\hline ${ }^{\text {Pitit }}$ \& \& | 30 |
| :--- |
| 31 | \& | 13.6 | 0.7 |
| :--- | :--- |
| 1.8 | 0.7 |
| 1.8 | | \& \& － $\begin{array}{r}5.2 \\ 5.3 \\ \hline\end{array}$ \& 0.4

0.4 \& ${ }_{8}^{8.7}$ \& 4.9

5.1 \& | 0.57 |
| :--- |
| 0.58 | \& ${ }^{89,730} 9$ \& $9,877.3$

$9,974.5$ \& $\underset{\text { 212，} 2365}{2,65}$ \& ¢ $\begin{gathered}\text { S209．4 } \\ 5211.0\end{gathered}$ \& 569.6

500.2 \& ${ }_{\text {¢ }}^{\text {¢31．2．}}$ \& $\begin{array}{r}\text { S64，} \\ \hline 564.9\end{array}$ \& $\begin{array}{r}\text { S0．4 } \\ \hline 50.2 \\ \hline\end{array}$ \& －91．7\％${ }_{\text {920\％}}$ \& ${ }_{\text {313，269 }}^{135,57}$ \& | 131,429 |
| :---: |
| 81,988 | \& －${ }_{\text {2，38 }}^{1.65}$ \& －${ }_{\text {56\％}}^{57 \%}$ \&

\hline Pit 32 （3）32．00\％ \& \& 32 \& 14．0 0.7 \& ． $7 \quad 2.5$ \& 5.3 \& 0.4 \& 8.8 \& 5.1 \& 0.58 \& 90，721 \& 10，058．4 \& 222，42 \& ${ }_{52121.1}$ \& 570.7 \& \＄32．0 \& S65．0 \& ＋ \& ${ }^{92.1 \%}$ \& 6， 033 \& 72,119 \& 0.91 \& 57\％ \& 26\％

\hline Pit 33 （3）3 33．0\％ \& \& ${ }^{33} \quad 14$ \& 0.7 \& ${ }^{7} \quad 2.5$ \& 5.4 \& 0.4 \& 8.9 \& 5.2 \& 0.59 \& 91.091 \& 10，094，4 \& 222,814 \& 5212.9 \& \＄71．0 \& 532.3 \& 565.1 \& 50.1 \& 92．2\％ \& 6， 0,83 \& 50，239 \& ${ }^{1.38}$ \& 58\％ \& 26%

\hline ${ }^{\text {Pitit }}$ \& \& 34

35 \& \& | .7 | 2.5 |
| :--- | :--- |
| .7 | 2.5 | \& $\begin{array}{r}5.4 \\ 5.4 \\ \hline\end{array}$ \& 0.4

0.4 \& $\stackrel{9.0}{9.0}$ \& 5.3
5.4 \& 0.60
0.60 \& ${ }_{9}^{91,71787}$ \& $10,150.8$
$10,183.9$ \& $\underset{\text { 223，}}{22,629}$ \& \& S71．4

571.6 \& ［ ${ }_{\text {S32．7 }}^{532.9}$ \& S65．21 \& （ $\begin{array}{r}50.2 \\ 50.0 \\ \hline\end{array}$ \& ${ }_{\text {92．5\％}}^{92.5 \%}$ \& $\frac{124,312}{40,25}$ \& ${ }_{\text {31，}}^{64,055}$ \& ［ | 1.94 |
| :--- |
| 1.27 | \& \& 26\％

\hline Pit 36 （36）36．0\％ \& \& ${ }^{36} \quad 14$ \& ［14．5 0.7 \& ${ }^{7} \quad 2.5$ \& 5.5 \& 0.4 \& 9.0 \& 5.4 \& 0.60 \& 92，144 \& 10，247．8 \& 224,192 \& 5215.6 \& \＄71．9 \& 533.1 \& ${ }_{565.3}$ \& 50.1 \& 92．6\％ \& 53，892 \& 45，886 \& 1.17 \& 59\％ \&

\hline \& \& | 37 |
| :---: |
| 14 |
| 15 | \& 14．6 0.7 \& － 2.5 \& 5.5 \& 0.4 \& 9.1 \& ${ }_{5}^{5.5}$ \& 0.61 \& ${ }^{922539}$ \& 10，358．6 \& 224，317 \& 5216．9 \& $\stackrel{572.5}{57}$ \& 533.5 \& ${ }_{\text {S65．4 }}$ \& 50．1 \& 927\％ \& 102，53 \& 67,788 \& ${ }^{1.51}$ \& 59\％ \& －${ }^{27 \%}$

\hline \& \& $\begin{array}{ll}38 \\ { }_{39} & 15 \\ 15\end{array}$ \& \& | 2．6 |
| :--- |
| 2.6 |
| 1 | \& 5.5

5.6 \& 0.4 \& ${ }_{9.2}^{9.2}$ \& 5.9

6.0 \& 0.65 \& \& | 10，587．2 |
| :--- |
| 10.62 .5 | \& ${ }_{231,473}^{23146}$ \& ［ \& 573.9

574.0 \& ${ }_{\substack{\text { S34，7，} \\ 534.8}}$ \& ${ }_{\text {S }}^{565.9}$ S \& $\begin{array}{r}50.4 \\ 50.0 \\ \hline\end{array}$ \& －93．3\％${ }^{93.4 \%}$ \& $\begin{array}{r}413,988 \\ \hline 20.123\end{array}$ \& ${ }_{\text {117，820 }}^{17,71}$ \& | 3.51 |
| :---: |
| 1.13 | \& －60\％ \&

\hline Pit 40 （ 40 ） 40.00% \& \& ${ }_{40} \quad 15$ \& 0.7 \& ． $7 \quad 2.6$ \& 5.6 \& 0.4 \& 9.3 \& 6.0 \& 0.65 \& 94，428 \& 10，688．1 \& 231,511 \& 5222.0 \& 574.3 \& 535.0 \& 565.9 \& 50.1 \& 93．5\％ \& 80，744 \& 36，372 \& 2.22 \& 60\％ \& 288

\hline \& \& ${ }^{42} \quad 15$ \& \& \& 5.6 \& \& \& \& 0.66 \& 94，736 \& 10，715．9 \& 231，587 \& \& \& \& \& \& \& \& \& \& \&

\hline Prita（3）43．0\％\％ \& \&	43
44	
14	\& \&
:---	
1	
2.6	
2.7	\& 5.6

5.7 \& 0.4
0.4 \& 9.5 \& 6.3

6.4 \& \begin{tabular}{l}
0.67

0.68

\hline

 \& ${ }_{9}^{95,895}$ \& 10，882．7 \& ${ }^{231,596}$ \& ¢ $\begin{array}{r}522.4 \\ 5225.6 \\ \hline\end{array}$ \& ¢ $\begin{array}{r}575.2 \\ 575.7\end{array}$ \& \& $\begin{array}{r}\text { S66．1 } \\ \hline 56.2\end{array}$ \& $\begin{array}{r}50.1 \\ 50.1 \\ \hline\end{array}$ \& ${ }_{\text {93，}}^{93 \%}$ \& －${ }_{\text {129，296 }}^{17,918}$ \& ${ }_{6}^{71,321} 6$ \& －

1.81

\hline 2.61

\hline
\end{tabular} \& 61\％ \& 29\％

\hline Pit 45 （45）45．00\％ \& \& ${ }^{45} \quad 16$ \& ${ }^{15.2}$ \& 7－2．7 \& 5.7 \& 0.4 \& 9.6 \& ${ }_{6}^{6.6}$ \& 0.69 \& 96,336 \& 11，120．6 \& 233，186 \& 5227．7 \& 576.7 \& 537．0 \& S66．4 \& 50．1 \& 94．0\％ \& 180，190 \& 100，899 \& ${ }^{1.79}$ \& 62\％ \&

\hline Pit 461466 46．00\％ \& \& ${ }_{4}^{46} \quad 17$ \& 0.7 \& $7 \quad 2.8$ \& 5.9 \& 0.4 \& 9.8 \& 7.6 \& 0.78 \& 99，409 \& 11，678．0 \& 244,25 \& \＄236，3 \& 579.7 \& 540.0 \& 567.0 \& 50.7 \& 95．0\％ \& 1．033，373 \& 291，603 \& ${ }^{3.54}$ \& 64% \&

\hline \& \& | 47 |
| :--- |
| 18 |
| 18 | \& ［17．8 0.7 \& 7 7.2 .9 \& $\begin{array}{r}5.9 \\ 5 \\ \hline 6\end{array}$ \& 0.4

0.4 \& 10.0 \& 7.9
8 \& 0.79
0.80 \& 100,239
10079 \& 11，757．0 \& 244，880 \& ¢ 5238.1 \& （ $\begin{array}{r}\text { S80．3 } \\ \text { S80．}\end{array}$ \& \％ $\begin{array}{r}50.7 \\ 5012 \\ \hline\end{array}$ \& S67．2

5673 \& \％ 50.1 \& 95．2\％${ }_{\text {9，}}$ \& － 210,273 \& | 108,388 |
| :---: |
| 3885 | \& － $\begin{array}{r}1.94 \\ \hline 1.97 \\ \hline 1\end{array}$ \& 65\％ \&

\hline \& \& $\begin{array}{rl}48 \\ 49 & 18 \\ 49\end{array}$ \& | 18.0 | 0.7 |
| :--- | :--- |
| 8.1 | 0.7 |
| 18 | | \& | .7 | 2.9 |
| :--- | :--- |
| .7 | 2.9 | \& 6.0

6.0 \& | 0.4 |
| :--- |
| 0.4 | \& 10.0

10.0 \& 8.0
8.1 \& 0.80
0.80 \& 10，704
100831 \& 11，803．1 \& ${ }_{247,785}^{24,45}$ \& S239．21 \& \＄80．6
S81．1 \& \& S67．3
567.3 \& $\begin{array}{r}50.1 \\ 50.0 \\ \hline\end{array}$ \& 95．4．4\％ \& ${ }_{\text {146，158 }}^{10,167}$ \& 39,886
49,200 \& ［ $\begin{array}{r}3.67 \\ 1.41 \\ \hline\end{array}$ \& \&

\hline Pit 50 （ 50 ） 50.00% \& \& ${ }^{50} \quad 18$ \& 18．2 0.7 \& $7 \quad 2.9$ \& 6.0 \& 0.4 \& 10.1 \& 8.1 \& 0.81 \& 101，011 \& 12，018，7 \& 247,676 \& 520.9 \& ${ }_{581.6}$ \& 541.7 \& ${ }_{567.3}$ \& 50.0 \& 95．4\％ \& ${ }_{61,532}$ \& 51，466 \& 1.20 \& 66\％ \&

\hline Pit 51 （ 511 ） 51.00% \& \& ${ }^{51} \quad 18$ \& ［8．3 0.7 \& $7 \quad 2.9$ \& 6.0 \& 0.4 \& 10.1 \& 8.2 \& 0.81 \& 101，105 \& 12，075．9 \& 247,676 \& 5241.4 \& 581.8 \& 541.8 \& S67．4 \& 50.0 \& 95．5\％ \& 36，232 \& 27，030 \& 1.34 \& 66\％ \&

\hline Pit 52 （ 52 ）52．00\％ \& \& ${ }_{52}{ }^{18}$ \& 18．4 0.7 \& $7 \quad 3.0$ \& 6.0 \& 0.4 \& 10.1 \& 8.2 \& 0.81 \& 101，211 \& 12，147．7 \& 247，676 \& 5222.0 \& \＄82．2 \& \& 5567.4 \& 50．0 \& 95．5\％ \& \& 28，042 \& 1.39 \& 66\％ \& 34\％

\hline \& \& ${ }_{55}^{53}$ \& \& （ ${ }^{3.0}$ \& ${ }_{6.1}^{6.0}$ \& ${ }_{0}^{0.4}$ \& $\frac{10.2}{10.2}$ \& ${ }_{8.4}^{8.3}$ \& 0．81 \& ${ }^{101,1888} 1$ \& | $12,271.7$ |
| :--- |
| $12,28,5$ | \& ${ }_{247,761}^{241}$ \& S223．0

52436 \& － $\begin{gathered}582.8 \\ 583.0\end{gathered}$ \& ${ }_{542.5}^{542.5}$ \& S67．4
567.4 \& $\begin{array}{r}50.0 \\ 50.0 \\ \hline\end{array}$ \& ${ }_{\text {9，5．6\％}}^{95 \%}$ \& ${ }^{71,9,920}$ \& ${ }_{4}^{48,941} 4284$ \& ${ }_{1.72}^{1.57}$ \& ${ }_{\text {ck }}^{67 \%}$ \&

\hline Pit 56 （56）56．00\％ \& \& ${ }^{56} \quad 18$ \& 18．7 0.7 \& $7 \quad 3.0$ \& 6.1 \& 0.4 \& 10.3 \& ${ }^{8.4}$ \& 0.82 \& 101，797 \& 12，317．9 \& 2478,813 \& 5244.0 \& 583.1 \& \＄42．7 \& 567.5 \& 50.0 \& 95．6\％ \& 55,82 \& 24，671 \& 2.26 \& 67\％ \& －${ }^{34 \%}$

\hline \& \& 57

58
58 \& \& （1）${ }^{3.1}$ \& ${ }_{6.2}^{6.2}$ \& 0．4 0.4 \& 10.4

10.5 \& \％${ }_{\text {8，}}^{8.4}$ \& 0．85 \& 102，994 \& | 12，480．9 |
| :--- |
| 12.6910 | \& － 252,238 \& $\underset{\substack{\text { S247．0 } \\ 52513}}{ }$ \& S84．2

S86．0 \& S44．0． \& S67，6

S67．8 \& S0，2 \& －95．9\％\％ \& ${ }_{\text {434，731 }}^{4}$ \& $\xrightarrow{112,983}$ \& | 3.81 |
| :---: |
| 3.45 | \& 年 67% \&

\hline Pit $59(59) 59.00 \%$ \& \& $59 \quad 20$ \& $0.4-0.8$ \& ． $8 \quad 3.2$ \& 6.3 \& 0.4 \& 10.6 \& 9.7 \& 0.91 \& 105，677 \& 12，887．2 \& 252，288 \& 5253.8 \& 587．1 \& 546.6 \& 568.0 \& 50.1 \& 96．3\％ \& 329,878 \& 102，525 \& 3.22 \& \&

\hline Pit $601(60) 60.00 \%$ \& \& ${ }_{60}{ }^{20}$ \& 20．7 0.8 \& 8 －3．2 \& ${ }_{6}^{6.3}$ \& 0.4 \& 10.7 \& 10.0 \& 0.93 \& 106，287 \& 13，022．7 \& 252，270 \& S256．0 \& 588，2 \& \& 568.0 \& 50．1 \& 96．4\％ \& 243,821 \& 100，970 \& 2.41 \& 70\％ \&

\hline Pit 61161161.00% \& \& $6_{1} \quad 21$ \& 21．6 0.8 \& 8 3，3 \& ${ }_{6} 6.4$ \& 0.4 \& 10.9 \& 10.7 \& 0.99 \& 108，23 \& 13，271．1 \& 26，218 \& 5260．4 \& 589，4 \& \＄49，4． \& 568.3 \& 50.3 \& 96．8\％ \& 768,162 \& 144，380 \& －5．32 \& 71\％ \&

\hline Pit $62(62) 66.200 \%$ \& \& 62
${ }_{63}$

63 \& （2．9 $\quad 0.8$ \& （e） \& | 6.4 |
| :---: |
| 64 |
| 6 | \& $\begin{array}{r}0.4 \\ 0.4 \\ \hline\end{array}$ \& 10.9

110 \& \begin{tabular}{|c}
10.9

111

\hline 1

 \& ${ }^{1.00}$ \&

108,982

10938

\hline 1085
\end{tabular} \& － $13,340.7$ \& 268，366 \& S262．1 \& S90．1 \& （ 5 S50．1 \& ¢68．4 \& S0，1 \& 96．9\％ \& 219,350

1163512 \& \& ［ $\begin{array}{r}3.49 \\ \hline 39 \\ \hline\end{array}$ \& 71\％ \& 40\％1

\hline Pitit 64 （6） 6464.000% \& \& ${ }_{64}^{63}$ \& ${ }^{2.4}$ \& ${ }_{8}$ \& ${ }_{6}^{6.5}$ \& －0．4 \& 11.1 \& $\frac{11.4}{11.4}$ \& ${ }_{1}^{1.03}$ \& $\frac{10,0361}{10,23}$ \& 13，82．7 \& 265， 108 \& S264， \& ¢ \& \& ${ }_{\text {S }}^{568.4}$ \& S0．0． \& ${ }_{\text {9，}}^{9.0 \% \%}$ \& ${ }_{\text {10，3，12 }}$ \& $\begin{array}{r}\text { 3，5，57 } \\ 881,94 \\ \hline\end{array}$ \& － $\begin{array}{r}3.29 \\ \hline .73\end{array}$ \& \&

\hline Pit 65 （65）65．00\％ \& \& ${ }^{65} \quad 22$ \& 22．9 0．8 \& 8 －${ }^{3.3}$ \& ${ }_{6}^{6.6}$ \& 0.4 \& 11.2 \& 11.7 \& ${ }^{1.05}$ \& 1111.129 \& 13，570．6 \& 269，019 \& S267．2 \& 591．9 \& \＄52．4． \& ${ }_{\text {S68．6 }}^{568}$ \& ${ }_{50.1}^{50}$ \& 97．2\％， \& 3828，866 \& ${ }_{\text {111，722 }}^{11821}$ \& 3.43
1.83 \& 73\％ \&

\hline Pit 6 （ 666666.000% \& \& $\stackrel{\text { c6 }}{67} \stackrel{23}{67}$ \& （3．0 \& \& ${ }_{6}^{6.7}$ \& 0.4
0.5 \& 11.2

11.3 \& $\begin{array}{r}11.8 \\ 12.0 \\ \hline\end{array}$ \& | 1.05 |
| :--- |
| 1.06 | \& 1111，294 \& ${ }_{\text {13，}}^{13,599.7}$ \& ${ }_{\text {269，0，39 }}$ \& \& 592.0

592.6 \& ¢552．6 \& $\begin{array}{r}\text { S68．6 } \\ \hline 58.6 \\ \hline\end{array}$ \& $\begin{array}{r}50.0 \\ 50.0 \\ \hline\end{array}$ \& ${ }_{\text {972\％}}^{97}$ \& \& 18，321
113,80 \& $\xrightarrow{1.83}$ \& \&

\hline Pit 68 （ 68 （ 68.00% \& \& 6^{23} \& 0．4 0.8 \& ${ }^{8} \quad 3.4$ \& 6.7 \& 0.5 \& 11.3 \& 12.1 \& 1.07 \& 112，199 \& 13，744．3 \& 269,37 \& 5229.8 \& 593.0 \& 553.6 \& 568.6 \& 50.0 \& 973\％ \& 114，684 \& 34，317 \& 3.34 \& 74\％ \& ${ }^{43 \%}$

\hline Pit 69 （69）69．00\％ \& \& ${ }_{69}^{69} \quad 24$ \& 0．2 0.8 \& 8 3．4 \& 6.7 \& 0.5 \& 11.5 \& 12.8 \& 1.11 \& 113，700 \& 13，895．0 \& 278，55 \& ${ }_{52773} 3$ \& 594.1 \& \＄55．4 \& 568.8 \& S0．1 \& 97．5\％ \& 687，87 \& 118，054 \& 5.82 \& 74\％ \&

\hline Pit $71(1) 171.100 \%$ \& \& ${ }_{71} \quad 24$ \& 0.3 \& （ 8 \％ 3.4 \& ${ }_{6}^{6.7}$ \& 0.5 \& ${ }^{11.5}$ \& 12.8 \& 1.12 \& 113，765 \& ${ }_{\text {13，905．0 }}$ \& 278，068 \& ${ }_{5}^{5273,5}$ \& ${ }_{5}^{594.1}$ \& ${ }_{5}^{555.5}$ \& \＄688．8 \& S0．0 \& 97．5\％ \& ${ }^{24,796}$ \& 13，480 \& －${ }_{\text {1．84 }}^{1.85}$ \& 75\％ \&

\hline \& \& \&	24．3
2.6	
0.8	
0.8	\& \&
:---	
6.8	\& 0.5

0.5 \& ${ }_{11.5}^{11.5}$ \& \begin{tabular}{l}
12.8

13.0

\hline

 \&

1.12

1.12

\hline

 \& ${ }^{113,488} 1$ \& － 1 1，9，005．2 \& ${ }_{2}^{278,083}$ \& ¢ \& ¢ $\begin{array}{r}\text { S94．2．} \\ 594.8 \\ \hline\end{array}$ \& \＄55．6 \& $\begin{array}{r}568.8 \\ 568.8 \\ \hline\end{array}$ \&

50.0

50.0

\hline
\end{tabular} \& ${ }_{\text {97，5\％}}^{97}$ \& ${ }_{\text {2 }}^{217,477} 1$ \& 14,208

887416 \& 1.66
2.03
2. \& ${ }_{75 \%}^{75 \%}$ \&

\hline Pit 74 （74）74．00\％ \& \& ${ }_{74} \quad 47$ \& 9，7 ${ }^{\text {1．5 }}$ \& ． $5 \quad 3.9$ \& 8.2 \& 0.6 \& 14.2 \& 33.4 \& 2.35 \& 163，376 \& 15，984， \& 491，008 \& 5370．9 \& ${ }_{5121.3}$ \& ${ }_{5}^{5109.1}$ \& 570.2 \& 51.4 \& 99．6\％ \& 20，43，8，86 \& 2，662，859 \& － 7.67 \& 92\％ \&

\hline Pit $76(766) 7.000 \%$ \& \& \& $\begin{array}{r}\text { 7．7 } \\ \hline 1.5 \\ \hline 1.5 \\ \hline 1.5 \\ \hline\end{array}$ \& | 1.5 | 3.9 |
| ---: | :--- |
| 15 | | \& ${ }_{\text {8，}}^{8.3}$ \& ${ }^{0.6}$ \& ${ }_{14.2}^{14.2}$ \& ${ }^{33.5}$ \& | 2.35 |
| :--- |
| 23 |
| 23 | \& ${ }_{\text {163，439 }}^{165725}$ \& ${ }^{15,9929.1}$ \& 491，618 \& ¢537．1 \& S121．4 \& ${ }_{\text {St109．1 }}$ \& － $\begin{array}{r}570.2 \\ 5703 \\ \hline\end{array}$ \& S0．0 \& 99．6\％ \& 23，386 \& 10，504 \& －${ }^{2} 23$ \& 93\％ \&

\hline Pit 78 （78）78．00\％ \& \& ${ }_{78} \quad 48$ \& 8．7 ${ }^{\text {a }}$ \& ． $5 \quad 3.9$ \& 8.3 \& 0.6 \& 14.4 \& 34.4 \& 2.39 \& 165，784 \& 16，042．4 \& 498，673 \& 5375.4 \& ${ }_{\text {S122．}}$ \& S111．5 \& $\frac{50.3}{50}$ \& \& 99．7\％ \& 23，92 \& 10，469 \& － 2.27 \& 93\％ \&

\hline Pit 7 P（ $79977.9 .00 \%$ \& \& 79
80

80 \& \& \& | 8.4 |
| :---: |
| 84 | \& ${ }^{0.6}$ \& ${ }_{14.5}^{14.5}$ \& 35.3

353 \& 2.43
2.23 \& 168.086
168163 \& 16，106．9 \& S02，522 \& ¢ 5379.6 \& S123．9 \& S114．0） \& S70．4 \& S0．1 \& 9， 9.8 \％ \& ${ }_{915,971}^{13545}$ \& （143，133 \& 6.40
.172 \& 94\％ \& 92\％

\hline Pit 8 P 8 （180）80．0．00\％ 8 81．00\％ \& \& 80
81

81 \& \& \begin{tabular}{l}
15

\hline 1.6

\hline

 \& ${ }_{8.4}^{8.4}$ \& 0.6 \&

14.5

\hline 14

 \& $\begin{array}{r}35.3 \\ 35.8 \\ \hline\end{array}$ \&

2.43

2.44

\hline
\end{tabular} \& $\xrightarrow{168,163} 1$ \& （16，153．8 \& 502，522 \& S380．0．4 \& \& S114．1 \& 570.4

50.5 \& | 50.0 |
| :--- |
| 50.0 | \& ${ }_{\text {9，9．8\％}}$ \& ${ }_{415,245}^{43,45}$ \& ${ }_{\text {25，31 }}^{18,45}$ \& ${ }_{4}^{1.722}$ \& \&

\hline Pit 82 （82）82．00\％ \& \& $82 \quad 50$ \& 50．6 ${ }^{1.6}$ \& ${ }^{6}$ 4．0 \& 8.5 \& 0.7 \& 14.7 \& 35.9 \& 2.45 \& 169，54 \& 16，362．1 \& 502，619 \& 5888.5 \& \＄122，6 \& 5115．8 \& 570.5 \& 50.0 \& 999\％ \& 181，911 \& 47，488 \& ${ }^{3.84}$ \& 95\％ \&

\hline Pit $83838388.8 .00 \%$ \& \& | 83 |
| :--- |
| ${ }^{83}$ |
| 5 | \& （e．8 \& ${ }^{16}$ \& ${ }_{8}^{8.5}$ \& 0.7 \& 14.7 \& ${ }_{36.1}^{36}$ \& 2．45 \& ${ }^{169,891}$ \& $\frac{16,388.4}{16083}$ \& ¢03，016 \& ${ }_{\text {S }}^{584.2}$ \& ${ }_{\text {S125．9 }}^{5}$ \& $\frac{5116.2}{5}$ \& $\begin{array}{r}\text { S70．5 } \\ \hline\end{array}$ \& S0．0 \& 99．9\％ \& 129，765 \& $\begin{array}{r}42,201 \\ \hline 689\end{array}$ \& －${ }^{3.07}$ \& 96\％ \&

\hline Pitit 8 P6（856）85．00\％ 86.00% \& \& | 85 |
| :--- |
| 86 |
| 80 | \& | 51．5 |
| :--- |
| 1.6 |
| 1.6 |
| 1.6 | \& | 1.6 |
| :--- |
| 1.0 | \& 8.5

8.6 \& 0.7 \& \begin{tabular}{l}
14.8

14.8

\hline

 \&

36.7

36.8

\hline

 \&

2.48

2.48

\hline

 \&

1717,39

\hline 17157

 \& 16，4081．31 \& 5077，811 \&

5886.8

588.2

\hline

 \& \&

S117．8

5118.0

\hline
\end{tabular} \& $\begin{array}{r}50.5 \\ 50.5 \\ \hline\end{array}$ \& S0．0． \& ${ }^{99.99 \%}$ \& 639，433

52,49 \& 68,49
42,210 \& 9．34
1.24 \& ${ }_{\text {96\％}}^{96 \%}$ \& ${ }_{\text {95\％}}^{\text {95\％}}$

\hline Pit 87 （87）87．00\％ \& \& | 87 |
| :--- |
| 88 |
| 8 | \& \& ${ }^{6}$－ 4.0 \& ${ }^{8.6}$ \& 0.7 \& 14.9 \& 37.4

37 \& ${ }_{2}^{2.51}$ \& 172，822 \& 16，477．3 \& 511，019 \& S389，8 \& ${ }_{\substack{\text { S127，6 } \\ \text { S27，}}}$ \& ${ }_{\text {S119．5 }}^{5}$ \& S70．5 \& 50．0 \& 100．0\％ \& 596,518 \& 70，92 \& 8.41 \& 97\％ \&

\hline Pit 89 （8）890）80．00\％ \& \& 89
89
89 \& $\begin{array}{r}\text { 2．3 } \\ \hline 2.3 \\ \hline 1.6 \\ \hline\end{array}$ \& ${ }^{1.6}$ \& ${ }_{8.6}^{8.6}$ \& 0.7 \& 14．9 \& 37.4
37.4 \& ${ }_{2.51}$ \& ${ }_{1}^{172,986}$ \& $16,483.9$
16.503 .6 \& 511，019 \& ¢ ${ }_{5390.0}$ \& $\underset{\text { S127．7 }}{\substack{\text { S127．}}}$ \& $\xrightarrow{\text { S119．7 }}$ \& 570.5
50.5 \& 50.0
50.0 \& 年10．0．0\％ \& $\xrightarrow{34,280}{ }_{12,45}$ \& $\xrightarrow{13,133} 1$ \& ${ }_{1.22}^{2.61}$ \& ${ }_{\text {97\％}}^{97 \%}$ \&

\hline Pit 90 （90）90．00\％ \& \& $90 \quad 52$ \& 2．4 ${ }^{1.6}$ \& ${ }^{6}$－ 4.0 \& 8.6 \& \& 14.9 \& 37.4 \& \& 173，072 \& ${ }^{16,517.8}$ \& 511，019 \& 5390.4 \& S127．9 \& 5119.9 \& 570.5 \& 50．0 \& 100．0\％ \& \& 13，560 \& 3.55 \& 97\％ \&

\hline \& \& $\begin{array}{r}91 \\ 92 \\ \\ \hline 92 \\ \hline\end{array}$ \& ［8．5 \& \& ${ }_{8.7}^{8.6}$ \& 0.7
0.7 \& 15.0
15.0 \& $\begin{array}{r}37.5 \\ 37.6 \\ \hline\end{array}$ \& $\begin{array}{r}\text { 2．51 } \\ 2.51 \\ \hline\end{array}$ \& $\xrightarrow{173,3,35}$ \& ${ }_{\text {16，}}^{16,577.1}$ \& 511，028 \& ¢ $\begin{array}{r}\text { S391．1．} \\ 5391\end{array}$ \& $\underset{\substack{\text { S128．2 } \\ \hline 128.4}}{ }$ \& ¢ $\begin{array}{r}\text { S120．1 } \\ \hline 120.4\end{array}$ \& $\begin{array}{r}\text { S70．5 } \\ 500.5 \\ \hline\end{array}$ \& 50.0
50.0 \& 年00．0\％ \& 78，934

82382 \& $\xrightarrow{42,614}$ \& | 1.85 |
| :--- |
| 3.57 | \& 97\％ \&

\hline Pit 93 （94）94．00\％ \& \& ${ }_{93} \quad 52$ \& （2．8 $\quad 1.6$ \& 1.6 \& 8.7 \& 0.7 \& 15.0 \& 37.8 \& 2.51 \& 173，715 \& 16，625．3 \& 511,74 \& 5392．1 \& 5128.5 \& \＄120．8 \& 570.5 \& 50．0 \& 100．0\％ \& 122，963 \& 24,135 \& 7.17 \& 98\％ \& 97\％

\hline Pit $94(95) 95.00 \%$ \& \& ${ }_{94}{ }_{53}$ \& ${ }_{1}{ }^{1.6}$ \& ${ }^{4.1}$ \& 8.8 \& 0.7 \& 15.1 \& 38.0 \& 2.52 \& 174，254 \& 16，668．9 \& 511，92 \& ${ }_{5393,2}$ \& S128．9 \& S121．5 \& 570.6 \& 50.0 \& 100．0\％ \& 228，931 \& 87,40 \& － 2.62 \& 98\％ \& 98\％

\hline \& \& | 95 | 53 |
| ---: | :--- |
| 96 | |
| 96 | | \& | 5．1． |
| :--- |
| 5．1．6 |
| 1.6 | \& | 1.6 |
| :--- |
| 1.6 | \& 8.9

8.9 \& 0.7

0.7 \& \begin{tabular}{l}
15.3

15.3

\hline

 \&

38.4

38.7

\hline

 \&

2.52

2.52

\hline
\end{tabular} \& 175,282

175,81 \& 16，983．1 \& | S12， 230 |
| :--- |
| 512,826 | \& $\underset{\substack{5395.1 \\ 5396.6}}{\text { S }}$ \& $\begin{array}{r}\text { S129．4 } \\ \substack{130.1} \\ \hline\end{array}$ \& Sti2．9 \& $\begin{array}{r}\text { S70．6 } \\ \hline 50.6 \\ \hline\end{array}$ \& s0．0

s0．0 \& －100．0\％ \& 427，188
282，193 \& ${ }_{\substack{156,716 \\ 75,41}}$ \& － $\begin{array}{r}2.73 \\ 3.74\end{array}$ \& 99\％
10\％ \& 999\％

\hline Pit 98 （99）99．00\％ \& \& 98 54 \& ［4．1 ${ }^{\text {5 }}$ \& ${ }^{6}$ 4．1 \& 8.9 \& 0.7 \& 15.4 \& 38.8 \& 2.52 \& 175，84 \& 16．822．8 \& 512,826 \& \& \& \& 570.6 \& 50.0 \& 100．0\％ \& 36,684 \& ${ }^{12,016}$ \& ${ }^{3.05}$ \& 100\％ \& 99\％

\hline t 99 （100）100．00\％ \& \& 99 ${ }^{54}$ \& 54．4 1.6 \& ${ }^{4.1}$ \& 9.0 \& 0.7 \& 15.4 \& 39.0 \& 2.53 \& 176，001 \& 16，829．0 \& 514，94 \& ${ }_{5397.7}$ \& \＄130．5 \& \＄124．5 \& 570.6 \& 50.0 \& 100．0\％ \& 250．583 \& 35，030 \& 7.15 \& 100\％ \& 100\％

\hline
\end{tabular}


```
*)
```


Runn1- Sensitivity Case - -10% Mining \cos
GEDABEK - Run11: - 10% Mining Cost - Pit by Pit Graph

Dilution Factor Reconer Fartor Tonanae Adiustmen

 2\％98\％
0.996

\begin{tabular}{|c|}
\hline \& Pit Shell Number \& \[
\begin{aligned}
\& \text { Rock_tonnes } \\
\& (\mathrm{Mt})
\end{aligned}
\] \& AG＿tonnes（Mt） \& FL＿tonnes（Mt） \& \[
\begin{aligned}
\& \text { HR_tonnes } \\
\& (\mathrm{Mt})
\end{aligned}
\] \& HC＿tones（Mt） \& \[
\begin{gathered}
\hline \text { Total Processed } \\
\text { tonnes (Mt) } \\
\hline
\end{gathered}
\] \& \[
\begin{array}{r|}
\hline \text { Waste_tonnes } \\
(\mathrm{Mt})
\end{array}
\] \& Strip Ratio \& \[
\begin{gathered}
\text { Recovered Au } \\
(\mathrm{oz})
\end{gathered}
\] \& \begin{tabular}{|c|}
\hline Recovered \\
\(\mathrm{Cu}(\mathrm{t})\)
\end{tabular} \& \[
\underset{\substack{\text { Recovered } A g \\ \text { (or) }}}{\text { Total }}
\] \& Revenue Sm \& Processing Costs SM \& Mining Cost＿SM \& NPVSM \& Inc．NPV \& \％of max NPV \& Inc Waste \& Inc ore \& Inc SR \& \％of max ore \& \％of max rock \\
\hline \& \& \& \& \& Total \& \& Total \& \& \& \& Total \& Total \& \& \& \& \& \& \& \& \& \& 25\％ \& \\
\hline \& \& \& 0.3
0.4 \& \({ }_{1.8}^{0.8}\) \& 2.7
2.7 \& 0.2 \& \({ }_{4.3}^{3.3}\) \& \({ }_{0.5}^{0.4}\) \& \({ }_{0.13}^{0.13}\) \& \({ }_{4}^{40,889}\) \& \({ }_{\text {3，}}^{3,0455.7}\) \& \& \& \({ }_{5350.6}^{534.6}\) \& 58．9 \& \({ }_{5341.7}^{581.6}\) \& 54.9 \& \& 124，161 \& \({ }_{422,417}\) \& 0.29 \& \& \\
\hline Pit 3 33 3 3．00\％ \& \& \& 0.4 \& \\
\hline Pit（4）4 4．00\％ \& \& \& 0.4 \& 1.1 \& 3 \& 0.3 \& 5 \& 0.8 \& \& 53,204 \& \& 139，30 \& S117．9 \& S40．0 \& \({ }_{\text {S11．8 }}^{512}\) \& ¢44．88 \& \& \& \& \& 0．40 \& \& \\
\hline Pit 5 （5）5．00\％ \& \& \({ }_{5}^{5}\) \& \begin{tabular}{l}
0.4 \\
0.4 \\
\hline
\end{tabular} \& \({ }_{\text {1．2 }}^{1.2}\) \& \(\begin{array}{r}3.3 \\ 3.4 \\ \hline\end{array}\) \& 0.3
0.3
0. \& \(\begin{array}{r}5.1 \\ 5.4 \\ \text { 5．4 } \\ \hline\end{array}\) \& 0.9
1.0 \& 0．18 \& 56，136 \& 4，976．9
5
5.228 .8 \& 146，482 \& \& \(\underset{\text { S41．9，}}{543}\) \& \(\begin{array}{r}\text { S12．6 } \\ \substack{13.3} \\ \hline\end{array}\) \& \& S． \& \& \begin{tabular}{l}
\(12,4,488\) \\
124082 \\
\hline 1
\end{tabular} \& \begin{tabular}{l}
253,613 \\
228,20 \\
\hline
\end{tabular} \& \begin{tabular}{l}
0.50 \\
0.54 \\
\hline
\end{tabular} \& \& \\
\hline Pit 7 （7）7．00\％ \& \& \(7 \quad 6\) \& 0.5 \& 1.3 \& 3.6 \& 0.3 \& 5.6 \& 1.2 \& 0.21 \& 6.5154 \& 5，592．0 \& 155，022 \& \({ }_{5136.7}\) \& S46．4 \& 514．3 \& \({ }_{551.8}^{50.1}\) \& S1．7 \& 73，\％\％ \& 167，048 \& 272，828 \& 0.61 \& －\({ }_{\text {36\％}}^{36 \%}\) \& \({ }^{12 \%}\) \\
\hline Piti \(8(8)\) 8．00\％ \& \& 8 － \& 0.5 \& 1.4 \& \({ }^{3.7}\) \& 0.3 \& 5.8 \& \({ }_{1.3}^{1.3}\) \& 0.23 \& \({ }_{6}^{63,065}\) \& \({ }_{\text {5，836．3 }}^{5}\) \& \({ }_{\text {158，366 }}^{150}\) \& \(\begin{array}{r}\text { S140，7 } \\ \hline 107\end{array}\) \& S47，9，
5 \& S14．8． \& \({ }_{\text {S52，}}^{55}\) \& \({ }_{50.9}^{50}\) \& 75．0\％ \& \({ }^{108,794}\) \& \& 0．70 \& 37\％ \& \\
\hline Pitt 9 （9）9．00\％ \& \& 9 \& \(\begin{array}{r}0.5 \\ \hline 0\end{array}\) \& 1.4 \& \(\begin{array}{r}3.8 \\ 3 \\ \hline 8\end{array}\) \& 0.3
0.3 \& 6.0 \& 1.4
1.5 \& 0．23 \& 64,256
65850 \& \(5,957.1\)
6.1097 \& 161．007
1639098 \& \({ }_{\text {S143，4 }}^{\text {S1471 }}\) \& 548.8
5501
S5 \& S15．3） \& ¢55．31 \& \(\begin{array}{r}50.6 \\ 508 \\ \hline 0 . \\ \hline\end{array}\) \& 75．8\％ \& 74,777
130812 \& 149，685 \& \begin{tabular}{|l}
0.50 \\
1.11
\end{tabular} \& \& \\
\hline \& \& 11 \& \begin{tabular}{rl}
\\
7 \\
\hline
\end{tabular} \& \({ }_{1}^{1.4}\) \& 3.8
3.9 \& \({ }_{0.3}^{0.3}\) \& 6.2 \& \({ }_{1.6}^{1.6}\) \& \({ }_{0}^{0.26}\) \& \({ }_{6}^{6,5,591}\) \& 6，1290．2 \& \({ }_{\text {16，}}^{16,4047}\) \& \＄148．7 \& \＄550．6 \& \＄516．1 \& \({ }_{5}^{554.5}\) \& \(\begin{array}{r}50.6 \\ 50.4 \\ \hline\end{array}\) \& \({ }_{7}^{7.5 \%}\) \& \({ }_{\text {13，}}^{64,921}\) \& \({ }_{9}^{11,8882}\) \& \({ }_{0.99}\) \& 40\％ \& \\
\hline Pit 12 （12）12．00\％ \& \& 12 \& 0.5 \& \& 4.1 \& 0.3 \& 6.4 \& 1.9 \& 0.29 \& 70，029 \& \({ }_{6,326.1}\) \& 167，42 \& 5115．2 \& 552.7 \& \& \＄55．9 \& ¢1．4 \& 7．5\％ \& 298，299 \& 275，122 \& 1.08 \& 42\％ \& 15\％ \\
\hline Pit 13 （13）13．00\％ \& \& \({ }^{13}\) \& 0.6 \& 1.5 \& 4.2 \& 0.3 \& 6.6 \& 2.0 \& 0.31 \& 71，708 \& 6，521．5 \& 172,567 \& 5159．2 \& \& \& 556.7 \& 50.8 \& 80．76 \& 166，086 \& 133，906 \& 1.24 \& \({ }^{42 \%}\) \& \\
\hline Pit 14 （14）14．00\％ \& \& 14 \& 0.6 \& 1.6 \& 4.3 \& 0.3 \& 6.8 \& 2.2 \& 0.32 \& 73，216 \& 6．867．9 \& 174,275 \& S163．8 \& \＄56．0 \& \& \＄57．4 \& 50.7 \& 817\％ \& 156，936 \& 288,388 \& 0.66 \& 44\％ \& \\
\hline Pit 15 （15）15．0\％ \& \& \({ }_{15}^{15}\) \& 0.6 \& 1.6 \& 4.3 \& 0.3 \& 6.9 \& 2.2 \& \& \& \& \& \({ }_{\text {St164，}}^{516}\) \& \& \& \& 50．1 \& \({ }^{81.9 \%}\) \& \begin{tabular}{l}
34,494 \\
\hline 11755
\end{tabular} \& \({ }_{4}^{41,491}\) \& 0.76 \& \({ }^{44 \%}\) \& \\
\hline Pit 16 （116）16．0\％\％ \& \& \begin{tabular}{|}
16 \\
17
\end{tabular} \& 3
9 \& \({ }_{1.8}^{1.7}\) \& \begin{tabular}{l}
4.4 \\
4.6 \\
\hline
\end{tabular} \& 0.3
0.3 \& 7.0
7.2 \& 2.4
2.7 \& 0.34
0.37 \& 74,988
76,734 \& \begin{tabular}{l}
\(7,053.3\) \\
\hline \(7,46.5\)
\end{tabular} \& \begin{tabular}{l}
175,763 \\
180,04 \\
\hline
\end{tabular} \& \& \(\begin{array}{r}\text { S57．3）} \\ 559.7 \\ \hline\end{array}\) \& \& 557.9
558.9 \& \& \({ }_{\text {c }}^{82.46 \%}\) \& \({ }_{\text {127，455 }}^{112}\) \& \& 0.99
1.20 \& 先年\％ \& \\
\hline Pit 18 （18）18．00\％ \& \& 18 \& 0.0 \& \({ }_{1.8}^{1.8}\) \& 4.6 \& 0.3 \& \({ }_{7}^{7.3}\) \& 2.7 \& \({ }_{0.38}\) \& \({ }^{7,174}\) \& 7，521．2 \& 180，129 \& \({ }_{\text {S1774．2 }}\) \& S50．11 \& \(\begin{array}{r}\frac{520.9}{50.9} \\ \hline\end{array}\) \& \＄559．1 \& ¢ \& 84．0\％ \& ¢ \({ }_{\text {328，52，}}^{62,29}\) \& \(\begin{array}{r}124,428 \\ 42 \\ \hline 1\end{array}\) \& 1．1．88 \& \(\stackrel{47 \%}{47 \%}\) \& － \\
\hline Pit 19 （19）19．00\％ \& \& \(19 \quad 10\) \& 0.6 \& 1.8 \& 4.7 \& 0.4 \& 7.4 \& 3.0 \& 0.41 \& 79，215 \& 7，634．2 \& 184，521 \& \({ }_{51178.3}\) \& S61．5 \& 521.7 \& \＄59．8 \& \({ }_{50,7}\) \& 85．\％\％ \& 273，148 \& 144，174 \& 1.89 \& 48\％ \& \\
\hline （ Pit 20（20）20．00\％ \& \& \({ }_{20}^{20}\) \& 0.6
0.6 \& 1.9 \& \begin{tabular}{|c}
4.8 \\
4 \\
\hline 8
\end{tabular} \& 0.4
0.4 \& \begin{tabular}{|}
7.6 \\
7
\end{tabular} \& 3.4
3 \& 0．44 \& \(\xrightarrow{81,213} 8\) \& 7，999．4 \& 186,725
18687 \& \(\stackrel{5183.5}{51845}\) \& \({ }_{\substack{\text { S63．6 } \\ \$ 640}}\) \& S22．9， \& \({ }_{560.5}^{560.6}\) \& \begin{tabular}{|c}
50.7 \\
501
\end{tabular} \& － \& \(\begin{array}{r}331,69 \\ \hline 6.681 \\ \hline\end{array}\) \& 205．844
58439 \& \({ }_{1.121}^{122}\) \& \& －19\％ \\
\hline Pit \(22(22) \mid 22.00 \%\) \& \& \({ }_{22}^{22}\) \& 0.6 \& 1.9 \& 4.9 \& 0.4 \& \({ }_{7} 7.8\) \& \({ }_{3.6} 3\) \& 0.46 \& \({ }^{82,790}\) \& 8，909．9 \& \({ }_{187}^{18,682}\) \& \(\stackrel{\text { S1847．0 }}{ }\) \& \({ }_{\text {S655．0 }}\) \& \({ }_{523.7}^{52 .}\) \& \({ }_{\text {S60．0 }}\) \& ¢0．4 \& \({ }_{\text {86．7\％}}^{\text {80，2\％}}\) \& \({ }_{\text {167，373 }}\) \& \& \({ }_{1.62}\) \& 50\％ \& \\
\hline Pit 23 （23）23．00\％ \& \& \({ }^{23}\) \& 0.6 \& 1.9 \& 4.9 \& 0.4 \& 7.9 \& 3.6 \& 0.46 \& 83,171 \& 8，146．6 \& 188，016 \& \＄187，9 \& 565.3 \& 523.9 \& 561.1 \& 50．1 \& 86.96 \& 50，921 \& 52，207 \& 0.98 \& \(51 \%\) \& 20\％ \\
\hline Pit \(24(24)\) 24．00\％ \& \& \({ }^{24}\) \& \({ }^{6}\) 0．6 \& 2.0 \& 4.9 \& 0.4 \& \& 3.7 \& 0.47 \& 83，345 \& 8，280．3 \& 188，096 \& S189．0 \& S65．9 \& S24．1 \& 561.1 \& \& 87，\％\％ \& 48，102 \& 49，455 \& 0.97 \& \({ }_{51 \%}\) \& \\
\hline \& \& \({ }^{25}\) \& 2－0．6 \& 2.0 \& 5.0
5 \& 0.4 \& 8.1 \& \({ }_{4}^{4.1}\) \& 0．51 \& 85，29， \& \begin{tabular}{l}
8.602 .7 \\
\hline 8095
\end{tabular} \& \({ }_{2}^{208,381}\) \& S194．4 \& ¢67．7 \& \& ¢ 56.00 \& \(\begin{array}{r}50.8 \\ 508 \\ \hline 8 . \\ \hline\end{array}\) \& \& \begin{tabular}{|}
410,179 \\
426226
\end{tabular} \& ［ \(\begin{array}{r}182,186 \\ \hline 20882 \\ \hline\end{array}\) \& \[
\frac{2,251}{2029}
\] \& \& 21\％ \\
\hline \& \& \({ }_{27}^{26}\) \& \begin{tabular}{l}
128 \\
\hline 129 \\
\hline 0.7 \\
\hline 0.7
\end{tabular} \& 2.1
2.1 \& \(\begin{array}{r}5.1 \\ 5.2 \\ \hline\end{array}\) \& 0.4
0.4 \& \begin{tabular}{l}
8.3 \\
8. \\
\hline 8
\end{tabular} \& 4.5 \& \begin{tabular}{l}
0.55 \\
0.55 \\
\hline
\end{tabular} \& \& \％ 8.993 .5 \& \({ }_{216,536}^{21,971}\) \& ¢ 5200.3 \& 569.9
500.4 \& 526.6
526.9 \& ¢ \(\begin{array}{r}562.8 \\ 562.9\end{array}\) \& 50.8
50.1 \& ¢ \({ }_{\text {89．3\％}}^{\text {89\％}}\) \& \({ }^{426,3626} 6\) \& ［ \(\begin{array}{r}20,882 \\ 72,133 \\ \hline\end{array}\) \& \[
\frac{2.09}{0.93}
\] \& －\({ }_{\text {53\％}}^{54 \%}\) \& \\
\hline Pit 28 （28）28．00\％ \& \& \({ }_{28}^{28}\) \& \(2 \quad 0.7\) \& \({ }_{2}^{2.2}\) \& 5.2 \& 0.4 \& \({ }_{8.5}^{8 .}\) \& 4.7 \& \({ }_{0}^{0.56}\) \& \({ }_{88,510}\) \& 9，9，85．0 \& \({ }_{212,134}\) \& \({ }_{5}^{5203.3}\) \& S71．2 \& \＄227．4 \& \({ }_{\text {S }}^{563.1}\) \& 50.2
50.2 \& \({ }_{\text {8，}}^{\text {8，9\％}}\) \& \({ }_{\text {136，424 }}^{1680}\) \& 9，4，400 \& \(\begin{array}{r}1.39 \\ 1 \\ \hline\end{array}\) \& 55\％ \& 23\％ \\
\hline Pit 29 （29）29．00\％ \& \& 29 \& 0.7 \& 2.2 \& 5.3 \& 0.4 \& 8.6 \& 4.9 \& 0.58 \& 89，525 \& 9，374．5 \& 222,279 \& 5206.1 \& 572.4 \& 528.1 \& 563.4 \& 50.3 \& 90．2\％ \& 219，065 \& 93，520 \& 2.34 \& 55\％ \& \\
\hline Piti 30（30） \(30.00 \%\) \& \& \({ }^{30}\) \& \(9 \quad 0.7\) \& \({ }_{2}^{2.3}\) \& \({ }_{5}^{5.3}\) \& 0.4 \& \(\bigcirc\) \& \({ }_{5}^{5.2}\) \& 0.60 \& \({ }^{90,777}\) \& 9，544，9 \& \({ }^{222,529}\) \& \({ }_{\text {S }}^{5209,1}\) \& \& \({ }_{528,8}^{52,8}\) \& －\({ }_{\text {S63，7 }}^{561}\) \& Son \& \({ }^{90.7 \%}\) \& \({ }^{245,208}\) \& 128，709 \& \({ }_{1}^{1.91}\) \& 55\％ \& \({ }^{246}\) \\
\hline Pit 31 3131）31．00\％ \& \& \({ }_{31}^{31}\) \& \(1-0.7\) \& \({ }^{2.3}\) \& \({ }_{5}^{5.4}\) \& 0.4 \& 8.8 \& \({ }_{5}^{5.3}\) \& 0.61 \& \({ }^{91,419}\) \& 9，603．4 \& 223，035 \& S210．6 \& 574．2 \& S29，3， \& \(\begin{array}{r}\text { S63．9 } \\ \hline 6.0\end{array}\) \& \(\begin{array}{r}50.1 \\ 50 \\ 5 \\ \hline\end{array}\) \& 90．9\％ \& \({ }^{116,700}\) \& \& \({ }_{1}^{1.28}\) \& \({ }_{57 \%}^{57 \%}\) \& \({ }^{25 \%}\) \\
\hline \({ }^{\text {Pitit } 32(32) 32.00 \%}\) \& \& 32
33
30 \& 0.7
0.7 \& 2.3
2.3 \& \(\begin{array}{r}5.4 \\ 5.5 \\ \hline\end{array}\) \& 0.4
0.4 \& 8.8
8.9 \& 5.4
5.5 \& \({ }_{0}^{0.61}\) \& 91，870 \& 9，694．8 \& 223，530
223,881 \& \& 574.7
574.8 \& \(\begin{array}{r}529.6 \\ 529.8 \\ \hline\end{array}\) \& \begin{tabular}{c}
564.0 \\
5640 \\
\hline
\end{tabular} \& 50.1
50.0 \& \(\xrightarrow{91.1 .16 \%}\) \& 109,256
35,115 \& 61，940
38,893 \& 1.76
0.90 \& －\({ }_{\text {57\％}}^{57 \%}\) \& 25\％ \\
\hline Pit 343 （34）34．00\％ \& \& \({ }^{34}\) \& 0.7 \& 2.3 \& 5.5 \& 0.4 \& 8.9 \& 5.5 \& 0.62 \& 92，214 \& 9，728．1 \& \({ }^{224,234}\) \& S212，7 \& \＄75．0 \& 529.9 \& \({ }_{5}^{564.1}\) \& 50．0 \& \({ }^{912 \%}\) \& 32，132 \& 14，965 \& 2.15 \& 57\％ \& \\
\hline \& \& \(\begin{array}{r}35 \\ 36 \\ \hline\end{array}\) \& 0 \& 2．4 \& 5．5 \& 0.4
0.4 \& 9.0 \& 5.9 \& 0.65 \& \({ }^{93,581}\) \& 9，942．9 \& \({ }^{231,391}\) \& \({ }_{5216,3}\) \& \＄76．3 \& \＄30．9， \& \＄ \(\begin{array}{r}\text { S64．5 } \\ \text { S60．5 }\end{array}\) \& S0．4 \& 91．7\％ \& \({ }^{378,029}\) \& 109,588 \& 3.45 \& 55\％ \& 26\％ \\
\hline \& \& \begin{tabular}{l}
36 \\
\({ }_{37}\) \\
\\
\hline
\end{tabular} \& \({ }_{0.7}^{0.7}\) \& \begin{tabular}{l}
2.4 \\
2.4 \\
\hline
\end{tabular} \& \({ }_{5}^{5.6}\) \& \({ }_{0}^{0.4}\) \& \({ }_{9.1}^{9.1}\) \& 6.0 \& \({ }_{0}^{0.66}\) \& \({ }^{94,4,368}\) \& \(\xrightarrow{\text { 9，9，953．2．}}\) \& \({ }_{\text {231，425 }}^{231,47}\) \& ¢ \(\begin{array}{r}5217.2 \\ 5218.1 \\ \hline\end{array}\) \& S77．6
57.1 \& \(\underset{\text { S31．4 }}{5}\) \& ¢64．5 \& S0．1
50．1 \& \({ }_{\text {91．1．9\％}}^{9.9}\) \& \({ }^{92,206} 6\) \& \({ }_{4}^{40,8884}\) \& 2.26
1.66 \& 59\％ \& \(\xrightarrow{26 \%}\) \\
\hline Pit 38 838）38．00\％ \& \& \({ }_{38} \quad 15\) \& 0.7 \& 2.4 \& 5.6 \& 0.4 \& 9.1 \& 6.1 \& 0.67 \& 94，377 \& 10，110，7 \& 231，427 \& 5218.5 \& \＄77．3 \& 531.5 \& 564.6 \& 50.0 \& 92．0\％ \& 35，503 \& 18.819 \& 1.89 \& 59\％ \& 27\％ \\
\hline Pit 39 （39）39．00\％ \& \& 39 \& \(3 \quad 0.7\) \& 2.4 \& 5.6 \& 0.4 \& 9.2 \& 6.2 \& 0.67 \& 94，37） \& 10，248．6 \& 231，509 \& 5220．0 \& 578.1 \& 531.9 \& 564.7 \& 50.1 \& 92．1\％ \& 110，244 \& 68,73 \& 1.60 \& \({ }_{59 \%}\) \& \\
\hline Pit 40（40）40．0\％\％ \& \& 40
41 \& \begin{tabular}{ll}
5 \& 0.7 \\
\hline 0.7 \\
\hline 0
\end{tabular} \& 2.5
2.5 \& 5.7
5.7 \& 0.4
0.4 \& \({ }_{9.3}^{9.3}\) \& \({ }_{6.5}^{6.5}\) \& 0.68
0.70 \& \({ }_{9}^{95,9673}\) \& \(10,310.1\)
\(10,366.0\) \& \(\xrightarrow{231,722}\) \& 52210 \& 578.4
597.0 \& \& \(\begin{array}{r}\text { S64．8 } \\ \hline 56.0\end{array}\) \& 50.1
50.2 \& －923\％\({ }_{\text {925\％}}\) \& \({ }_{198,713}^{117,61}\) \& \(\stackrel{54,802}{89,243}\) \& 2.15
2.23 \& \& 27\％ \\
\hline Pit 21 （42）42．00\％ \& \& \(42 \quad 15\) \& \(9 \quad 0.7\) \& 2.5 \& 5.7 \& 0.4 \& 9.3 \& 6.5 \& 0.70 \& \({ }_{96,145}\) \& 10，398． \& 232，551 \& \({ }_{5}^{5223,2}\) \& \＄79．2 \& 533.0 \& \({ }^{565.0}\) \& \＄0．0 \& 925\％ \& 53，965 \& 17，769 \& 3.04 \& 60\％ \& 28\％ \\
\hline Pit 43 （43）43．00\％ \& \& \({ }^{43}\) \& \(3 \quad 0.7\) \& 2.6 \& 5.9 \& 0.4 \& \& 7.6 \& 0.79 \& 99，411 \& 10，956．0 \& 244,158 \& 5232.0 \& \({ }_{582.3}\) \& 535.9 \& \＄65．8 \& 50.8 \& 93．6\％ \& 1，091，477 \& 297，144 \& 3.67 \& \({ }^{62 \%}\) \& \\
\hline Pit 44（44）44．00\％ \& \& \({ }^{44}\) \& 7－0．7 \& 2.7 \& 6.0 \& 0.4 \& 9.8 \& 8.0 \& 0．81 \& \({ }^{100,436}\) \& 11，216．6 \& \({ }^{247,386}\) \& S235，3 \& \＄88．8． \& \＄36．9， \& \(\stackrel{566.0}{560}\) \& S0．2 \& －93．9\％\({ }_{\text {9，}}\) \& \({ }_{\substack{326,788 \\ 53009}}\) \& （161，966 \& \(\stackrel{2.02}{1.09}\) \& \({ }_{\text {cier }}^{63 \%}\) \& 31\％ \\
\hline Prit 45 （4）45．0\％ \& \& \({ }_{46}^{45}\) \& \begin{tabular}{ll}
18 \& 0.7 \\
\hline 19 \& 0.7
\end{tabular} \& 2.7
2.7 \& 6.0
6.0 \& 0.4
0.4 \& \(\underline{9.8}\) \& 8.0
8.0 \& 0.82
0.82 \& 100，635
100，704 \& 11，261．5 \& \begin{tabular}{l}
24，704 \\
24， 0404 \\
\hline
\end{tabular} \& － \(\begin{array}{r}533.9 \\ 5236.1 \\ \hline\end{array}\) \& 584.1
584.2 \& \& 566．0． \& \& \(\xrightarrow{940 \% \%} 9\) \& 53,099
16,780 \& － \(\begin{array}{r}35,480 \\ 13,751\end{array}\) \& 1.99
1.22 \& －63\％ \& \\
\hline Pit 47 （47）47．00\％ \& \& \({ }_{47} \quad 17\) \& 9.0 .7 \& 2.7 \& 6.0 \& 0.4 \& 9.9 \& 8.1 \& 0.82 \& 100，836 \& 11，301．7 \& 247，24 \& \({ }_{5}^{5236.5}\) \& \({ }_{584.3}\) \& 537．3 \& \({ }_{566.1}\) \& S0．0 \& 94．0\％ \& 40,893 \& 20，688 \& 1.98 \& 64\％ \& 32\％ \\
\hline Pit 88 （48）48．00\％ \& \& \({ }_{48}^{48} \quad 18\) \& \(0 \quad 0.7\) \& 2.7 \& 6.0 \& 0.4 \& 9.9 \& 8.1 \& 0.82 \& 100，949 \& 11，430．5 \& \({ }^{247,433}\) \& 5237.4 \& \＄84．9 \& 537．5 \& \({ }_{566.1}\) \& 50.0 \& 94．1\％ \& 65，161 \& 43，752 \& 1.49 \& 64\％ \& 32\％ \\
\hline Pit 5 （50） \(50.00 \%\) \& \& 50
51
50 \& 3
4 \& \(\begin{array}{r}2.8 \\ 2.8 \\ \hline 1\end{array}\) \& \({ }_{6.1}^{6}\) \& 0.4 \& 10.0 \& \({ }_{8}^{8.3}\) \& 0．83 \& \({ }_{\text {101，518 }}^{101583}\) \& \({ }^{111,572.8}\) \& 2277，638 \& ［533，2． \& \& \(\frac{538.1}{5383}\) \& ¢66．2． \& \％ 50.1 \& 94， 9 \& \(\begin{array}{r}194,565 \\ \hline 17513\end{array}\) \& \begin{tabular}{l}
107422 \\
\hline 1029
\end{tabular} \& \(\frac{1.81}{1.16}\) \& \(\frac{65 \%}{65 \%}\) \& \\
\hline \& \& \({ }^{51} 5\) \& \begin{tabular}{l}
4 \\
5 \\
\hline 0.7 \\
\hline 0.7
\end{tabular} \& \(\begin{array}{r}2.8 \\ 2.8 \\ \hline\end{array}\) \& \(\stackrel{6.1}{6.1}\) \& 0.4
0.4 \& 10.0
10.1 \& \({ }_{8.4}^{8.4}\) \& －0．83 \& \({ }^{1010,583}\) \& 111．647．5 \& 247，\({ }_{24831}^{248}\) \& ¢ \(\begin{array}{r}5239,7 \\ 520.4\end{array}\) \& S86．1
S86．3 \& \(\underset{538.5}{\substack{58.3 \\ 588.5}}\) \& －\({ }_{\text {566．2．}}^{56.3}\) \& 50.0
50.0 \& － \& \begin{tabular}{l}
37，613 \\
85,50 \\
\hline
\end{tabular} \& \({ }_{\text {2 }}^{51,786}\) \& \begin{tabular}{l}
1.46 \\
1.64 \\
\hline
\end{tabular} \& 65\％ \& － \begin{tabular}{l}
\(32 \%\) \\
\(33 \%\) \\
\hline
\end{tabular} \\
\hline Pit 53 （53）53．00\％ \& \& \({ }_{53} \quad 18\) \& 0.7 \& 2.8 \& 6.2 \& 0.4 \& 10.1 \& 8.5 \& 0.84 \& 102，027 \& 111，709．0 \& 247，839 \& \& \& \& 566 \& \& \& \& 29，0 \& \({ }^{1.42}\) \& \& \\
\hline Pit \(54(54) 54.00 \%\) \& \& \({ }_{54}^{54} \quad 191\) \& 0.7 \& 2.8 \& 6.2 \& 0.4 \& 10.2 \& 8.9 \& 0.87 \& 33，077 \& 11，865．4 \& 251，39 \& \& \& \& 566. \& \& 94．6\％ \& 400，107 \& \& \& \& \\
\hline Pit \(55(55) 55.00 \%\) \& \& \({ }^{55}\) \& 0.7 \& \({ }_{2}^{2.8}\) \& \({ }_{6}^{6.2}\) \& 0.4 \& 10.2 \& 8.9 \& 0.87 \& 103，722 \& 111，888，3 \& 251，739 \& S224，8 \& \({ }_{\text {S }}^{5877}\) \& 539．8 \& \({ }_{566.5}^{56}\) \& \＄0．0 \& \({ }^{94.6 \%}\) \& \({ }^{23,727}\) \& 22，304 \& \({ }^{1.06}\) \& \({ }^{66 \%}\) \& \({ }^{34 \%}\) \\
\hline Pit 56 （ 566 ） \(56.00 \%\) \& \& \({ }_{56}^{56}\) \& \(3 \quad 0.7\) \& 2.9 \& 6.3 \& 0.4 \& 10.4 \& 9.9 \& 0.95 \& 105，376 \& 12，228．4 \& 263，059 \& 5299．6 \& \＄89．6 \& 542．2 \& \＄66．8． \& \& 95．16， \& 961，272 \& \({ }_{186,591}^{183}\) \& \& \({ }^{67 \%}\) \& \\
\hline Piti 7 （57） \(57.00 \%\) \& \& 57
58

58 \& － 0.8 \& \begin{tabular}{|}
3.0

3

3

 \&

6.4

64

64
\end{tabular} \& 0.4

0.4 \& \begin{tabular}{l}
10.5

10.6

\hline

 \& 10．5 \& 0.99 \&

107,230

\hline 108145
\end{tabular} \& 12，3979，9， \& 263,067

263200 \& ¢ ${ }_{5}^{5253.7}$ \& \& \& S67．0
5671 \& \& 95．4\％ 9 \& 588,991

290002 \& | 133,357 |
| :--- |
| 91911 |
| 101 | \& 4.34

3.16 \& \&

\hline ${ }^{\text {Pret }}$ P88（58）58．00\％ \& \& $\begin{array}{r}58 \\ 59 \\ \hline\end{array}$ \& | 7 |
| :--- | \& 3.0

3.0 \& ${ }_{6.5}^{6.4}$ \& 0．4 0.4 \& 10.6
10.7 \& 10.7
10.9 \& ${ }_{1}^{1.02}$ \& 108,25
108,886 \& 12，464．7 \& $\xrightarrow{263,200}$ \& \& 592.1
592.9 \& \& 566.1
567.2 \& \& ${ }_{\text {9，5．5\％}}^{95 \%}$ \& 200，02
165,024 \& ${ }_{\text {910，911 }}^{110,50}$ \& 3.16
1.99 \& \&

\hline Priteo（60） 6.00% \& \& ${ }_{60}^{60}$ \& 8 － 0.8 \& ${ }^{3.0}$ \& ${ }_{6}^{6.5}$ \& 0.4
0.5 \& 10.8 \& 11.1 \& ${ }_{1}^{1.03}$ \& 1090,166
111332 \& 12，602．7 \& 2664，922 \& $\underset{\substack{558.1 \\ 5263}}{5}$ \& ¢ 593.2 \& S45．5 \& S67．2
S675 \& ¢0．1 \& ${ }^{95.7 \%}$ \& $\begin{array}{r}173,844 \\ \hline 77215 \\ \hline\end{array}$ \& 34，019
16782 \& 5．11 \& －${ }^{69 \%}$ \&

\hline Pit $62(62) 6.2 .00 \%$ \& \& $61-22$ \& $1-0.8$ \& ${ }_{3.1}^{3.1}$ \& ${ }_{6.6}^{6.6}$ \& 0.5 \& | 10.0 |
| :---: |
| 11.0 | \& ${ }_{12.1}$ \& | 1.08 |
| :--- |
| 1.09 | \& ${ }_{1111,351}^{11}$ \& 12，825．0 \& ${ }_{\text {20，}}^{269,213}$ \& ¢ 5 S26．4．8． \& ${ }_{5}^{595.0}$ \& 547．4．

58 \& ${ }_{\text {S677．5 }}$ \& S0．1 \& 96．1\％ \& $\xrightarrow{237,202}$ \& 101，963 \& 2．23 \& －17\％ \&

\hline Pit 63 （63）63．00\％ \& \& ${ }_{63}^{63}$ \& 2－0．8 \& ${ }^{3.1}$ \& ${ }_{6}^{6.7}$ \& 0.5 \& 11.1 \& 12.1 \& 1.09 \& 112，004 \& 12，956．2 \& 269，26 \& S264．9 \& 596．0， \& 548，2 \& ${ }_{\text {S67，5 }}^{567}$ \& 50．0 \& ${ }^{96.1 \%}$ \& 11,303 \& ${ }^{11,484}$ \& ${ }^{0.98}$ \& － 717 \& ${ }^{41 \%}$

\hline \& \& \& \& \& ${ }_{6.8}^{6.7}$ \& 0.5
0.5 \& 11.2

11.2 \& | 12.8 |
| :--- |
| 12.8 | \& \& 113，608

113,760 \& 13，128．4 \& 277，924
277,39 \& $\xrightarrow{5268,7}$ \& $\begin{array}{r}\text { ¢97．3 } \\ 597.5 \\ \hline\end{array}$ \& \& \& \& \& 693,799

45,982 \& $\begin{array}{r}136,813 \\ 26,608 \\ \hline 1\end{array}$ \& | 5．07 |
| :--- |
| 1.73 | \& \&

\hline Piti66（66）66．00\％ \& \& ${ }^{66}$ \& 0.8 \& 3.2 \& ${ }_{6}^{6.8}$ \& 0.5 \& 11.2 \& 12.9 \& 1.15 \& 113，835 \& 13，159．0 \& 277，939 \& 52693 \& \& \& ${ }_{567,7}$ \& 50．0 \& ${ }^{96.46 \%}$ \& 28，757 \& 14，336 \& 2.01 \& ${ }^{72 \%}$ \&

\hline ${ }^{\text {Pitit } 67(6) \text {（67）} 67.0 \%}$ \& \& $\begin{array}{r}67 \\ \hline 69 \\ \hline 69\end{array}$ \& 3 \& $\begin{array}{r}3.2 \\ 3.6 \\ \hline\end{array}$ \& ${ }_{6.3}^{6.8}$ \& 0.5
0.6 \& 11.3
14.0 \& $\begin{array}{r}13.0 \\ 3.4 \\ \hline\end{array}$ \& 1.15
2.40 \& 114,159
163,293 \& 13，161．7 \& 278,39
491460 \& 5269.8
5859
5 \& \& \％ 5 50．5 \& （ $\begin{gathered}567.7 \\ 569.8\end{gathered}$ \& \& 96．4\％${ }_{\text {9，}}^{9.4}$ \& 109，422 \& 39，637
2．67，413 \& $\begin{array}{r}2.76 \\ \hline 7.65 \\ \hline\end{array}$ \& 永\％ \&

\hline Pitit 7 （70）70．00\％ \& \& $70 \quad 47$ \& 1.5 \& 3.6 \& ${ }^{8.3}$ \& 0.6 \& 14.0 \& 33.5 \& 2.40 \& 163，322 \& 15，199．5 \& 491，460 \& \＄366．2 \& \＄126，7 \& 598.7 \& ${ }_{569.8}$ \& 50．0 \& 99．46 \& 34，038 \& 16，618 \& 2.05 \& 90\％ \& 846

\hline Pit ${ }^{\text {Pit } 2(72) \text { 2．} 2.00 \%}$ \& \& ${ }_{72}^{72}$ \& ${ }_{1}^{1.5}$ \& ${ }_{3.6}^{3.6}$ \& | 8.3 |
| :---: |
| 8.8 | \& ${ }_{0}^{0.6}$ \& $\frac{14.1}{14.2}$ \& $\begin{array}{r}34.4 \\ 353 \\ \hline\end{array}$ \& 2．44 \& ${ }_{\text {165，622 }}^{16799}$ \& | $15,222.7$ |
| :--- |
| 15312 | \& 498，516 \& ${ }_{\substack{5370.5 \\ 53725}}$ \& ¢ ${ }_{\text {S128．1 }}^{5129}$ \& ¢ 5100.9 \& $\begin{array}{r}569.9 \\ 500 \\ \hline\end{array}$ \& \& 99．5\％ \& \& ${ }_{\text {118，627 }}^{14,861}$ \& | 7,78 |
| :---: |
| 5.87 | \& －${ }_{9}^{91 \%}$ \&

\hline Pit 7 （774）74．00\％ \& \& 74×49 \& $7 \quad 1.5$ \& ${ }_{3.7}$ \& 8.4 \& 0.6 \& 14.3 \& 35.4 \& 2.48 \& 168，255 \& 15，30．5 \& 502，364 \& \＄375．2 \& \＄129．7 \& ${ }^{51023} 3$ \& 570．0 \& \＄0．0 \& 99．7\％ \& 139，246 \& ${ }_{31,825}$ \& 4.38 \& ${ }_{92 \%}$ \&

\hline \& \& 75
76

7 \& \begin{tabular}{l}
7

\hline 8

\hline 1.5

\hline 1.5

\hline 1

 \&

3.7

3.7

 \&

8.4

8.5

\hline
\end{tabular} \& 0.6

0.6 \& 14.3
14.3 \& $\begin{array}{r}35.4 \\ 35.5 \\ \hline\end{array}$ \& 2．48 \& \& 15，341．5 \& 502364
502

500 \& \& S ${ }_{\text {S129，7 }}^{5129}$ \& S \& ¢ 570.0 \& \& \& － $\begin{array}{r}25,300 \\ 57100\end{array}$ \& － $\begin{array}{r}14,383 \\ \hline 27309\end{array}$ \& | 1.75 |
| :---: |
| 209 | \& －${ }^{29 \%}$ \&

\hline Pit $77(77) 77.00 \%$ \& \& $77-50$ \& 0 ${ }^{1.5}$ \& ${ }_{3.7}$ \& ${ }_{8.5}^{8.5}$ \& 0.6 \& 14.4 \& ${ }_{35.6}$ \& ${ }_{2} 2.48$ \& 168，829 \& 15，379．8 \& 502，430 \& 5377.6 \& S130．2 \& S104．0 \& ${ }_{5}^{570.1}$ \& 50．0 \& 99．76\％ \& 163，671 \& 71，722 \& 2.28 \& 93\％ \& 88\％

\hline Pit 78 （78）78．00\％ \& \& $78 \quad 50$ \& 1.5 \& 3.7 \& 8.5 \& 0.6 \& 14.4 \& 35.7 \& 2.48 \& 168，976 \& 15，385．8 \& 502，761 \& 5377.9 \& \＄130．2 \& 5104．2 \& 570.1 \& 50.0 \& 99，7\％ \& 61，042 \& 14，799 \& 4.14 \& 93\％ \&

\hline Pitit 97（9）79．0\％\％ \& \& 79
80
80 \& 7 ${ }_{4}$ \& \& 8.6

8.6 \& \& \begin{tabular}{l}
14.5

14.6

\hline

 \&

36.2

36.8

\hline
\end{tabular} \& 2.50

2.53 \& ${ }^{170,188} 1$ \& 15，563．8 \& （ 502,888 \& $\xrightarrow{537929}$ \& \& Si10，5 \& $\begin{array}{r}570.1 \\ 50.2 \\ \hline\end{array}$ \& \& ${ }_{\text {c }}^{99.89 \%}$ \& ${ }_{5}^{584,1,82}$ \& $\xrightarrow{108,43} 5$ \& 4.93
10.40 \& $\xrightarrow{993 \%}$ \&

\hline Piti 81 181） 81.00% \& \& 81
81

81 \& 4 ${ }^{1.6}$ \& \begin{tabular}{|}
3.7

\hline

 \& 8.6 \& 0.7 \& 14.6 \&

36.9

37

 \& 2.53 \&

171,63

\hline 1729
\end{tabular} \& ${ }_{\text {15，605，5 }}^{15}$ \& 507，744 \& ${ }_{\text {S }}^{5882.7}$ \& ${ }_{\text {S }}^{51326}$ \& S107．0

S003 \& $\stackrel{570.2}{502}$ \& S0．0 \& 99．8\％ \& $\underset{\substack{68,666 \\ 55809}}{ }$ \& ${ }^{15,998}$ \& 4.43 \& ${ }^{94 \%}$ \&

\hline \& \& 82
83

83 \& （2）${ }^{1.6}$ \& ${ }_{3.7}^{3.7}$ \& | 8.6 |
| :--- |
| 8.6 | \& 0.7

0.7 \& 14．6 \& | 37.4 |
| :--- |
| 37.5 | \& $\begin{array}{r}2.56 \\ 2.56 \\ \hline\end{array}$ \& ${ }^{1727,996}$ \& － 15.621 .6 \& S51，861 \& ${ }_{5}^{58855.0}$ \& $\underset{\text { S133，4 }}{5}$ \& $\frac{5108.3}{5108.5}$ \& 570.2

590.2 \& $\begin{array}{r}\text { S0．0 } \\ \hline 500\end{array}$ \& ${ }_{\text {9，99\％}}^{\text {99\％}}$ \& ${ }_{568,099}^{69,75}$ \& | 59，060 |
| :--- |
| 3,326 | \& 2．62 \& $\xrightarrow{99 \%}$ \& 92\％

\hline Pit 84884484.00% \& \& ${ }_{84} \quad 52$ \& 2 1.6 \& 3.8 \& 8.7 \& 0.7 \& 14.8 \& 37.8 \& 2.56 \& 173，839 \& 15，703．1 \& 510,86 \& 5386.9 \& 5134.0 \& 5109.4 \& 570.2 \& 50.0 \& 99．9\％ \& 312，405 \& 102，607 \& 3.04 \& 95\％ \& 93\％

\hline \& \& 85
86

80 \& ［27 \& | 3.8 |
| :--- |
| 3.8 | \& 8.8

8.8 \& 0.7

0.7 \& | 14.8 |
| :--- |
| 14 | \& 37.9

38.0 \& 2.56
2.56 \& 173,916

174,29 \& | 15，765，6 |
| :--- |
| 15,989 | \& $\xrightarrow{510,871}{ }_{510,95}$ \& ${ }_{\substack{5887.4 \\ 5888.1}}$ \& \& S109．6

S10．0 \& $\begin{array}{r}570.2 \\ 50.2 \\ \hline\end{array}$ \& $\frac{50.0}{50.0}$

50， \& ${ }_{\text {9，99\％}}^{99.9}$ \& ${ }_{\text {cher }}^{613,701}$ \& $\stackrel{21,83}{54,933}$ \& | 2.82 |
| :--- |
| 2.38 | \& $\xrightarrow{99 \%}$ \&

\hline Pit 87 8787）87，00\％ \& \& ${ }^{87} \quad 5$ \& $4 \quad 1.6$ \& 3.8 \& 8.9 \& 0.7 \& ${ }^{15.0}$ \& 38.4 \& \& 175，110 \& 1，8831．5 \& 511,870 \& 5889.7 \& \＄135， 1 \& S111．0 \& 570．2 \& 50.0 \& 100．0\％ \& 393，352 \& ${ }_{1}^{11,3865}$ \& ${ }_{3.53}$ \& ${ }^{99 \%}$ \&

\hline Pitits9（89）89．00\％ \& \& 88

89 \& 6－1．6 \& \begin{tabular}{l}
3.8

3.8

\hline

 \&

8.9

9.0

\hline
\end{tabular} \& 0.7

0.7 \& 15.0

15.0 \& $\begin{array}{r}38.6 \\ 38.6 \\ \hline\end{array}$ \& | 2.57 |
| :--- |
| 2.57 | \& ${ }^{175,547}$ \& － $\begin{aligned} & 15,842.5 \\ & 15.857 .0\end{aligned}$ \& 511,973

511973 \& 5390.4
5390.6 \& $\begin{array}{r}\text { S135．3 } \\ \hline \\ \hline 135.4 \\ \hline\end{array}$ \& ${ }_{\text {S }}^{\text {S111．4．}}$ \& $\begin{array}{r}570.2 \\ 500.2 \\ \hline\end{array}$ \& s0．0

50.0 \& 100．0\％ \& ${ }_{\text {155，029 }}^{38065}$ \& ${ }_{\text {53，266 }}^{17359}$ \& | 2.91 |
| :---: |
| 2.9 | \& 97\％${ }_{\text {97\％}}^{97}$ \&

\hline Pit 91 （91）91．00\％ \& \& ${ }_{91} \quad 53$ \& $7 \quad 1.6$ \& ${ }_{3.8}$ \& 9.0 \& 0.7 \& 15.1 \& 38.7 \& 2.57 \& 175，713 \& 15，855．7 \& 512，034 \& \＄391．0 \& \＄135．6 \& \＄111．8 \& 570．2 \& 50．0 \& 100．0\％ \& 64，700 \& 34，377 \& 1.88 \& 97\％ \&

\hline \& \& ${ }_{9}^{92} \quad 5$ \& 8 \& $\begin{array}{r}3.8 \\ 38 \\ \hline\end{array}$ \& | 9.0 |
| :--- |
| 1 | \& 0.7

0.7 \& $\stackrel{15.1}{15.2}$ \& \begin{tabular}{|c}
38.7

393

 \&

2.57

.28

\hline

 \&

175,841

175090

\hline 1
\end{tabular} \& ［15．876．2 \& 512，077 \& ¢ ${ }_{\text {5391．22 }}^{5933}$ \& ${ }_{\text {S }}^{5135.6}$ \& 5111.9

5

5113 \& ¢ | 570.2 |
| :---: |
| 570.3 | \& 50.0

500 \& （100．0\％ \& ${ }_{\text {462，966 }}^{5358}$ \& 19，543 \& 2.40
4.14 \& 97\％ \& 95\％

\hline Pit $94(94) 94.00 \%$ \& \& ${ }_{94} \quad 54$ \& $7 \quad 1.6$ \& ${ }_{3.8}^{3.8}$ \& 9.1 \& 0.7 \& 15.2 \& 39.5 \& 2.59 \& 177，451 \& 15，936．0 \& 514,724 \& \＄394，3 \& \＄136．6 \& S113．9 \& 570.3 \& 50．0 \& 100．0\％ \& 256，99 \& 29，059 \& 8.84 \& 98\％ \&

\hline Pitit96 9669969.00% \& \& ${ }_{96}{ }^{96}$ \& 9－1．6 \& ${ }^{3.8}$ \& 3 \& 0.7 \& 15， \& 39.7 \& 2.59 \& 177，756 \& －15，981．6 \& 514，724 \& $\stackrel{53950}{5}$ \& S136．9 \& ${ }_{\text {S114．3 }}^{5}$ \& \& 50．0 \& －100．0\％ \& 150，560

135683 \& － $\begin{array}{r}\text { 54，725 } \\ \hline 15935 \\ \hline 105\end{array}$ \& | 2.75 |
| :---: |
| 8.67 |
| 8 | \& －99\％ \&

\hline \& \& | 98 |
| :--- |
| |
| 98 | \& \& \& \& \& \& \& \& \& 16，029．3 \& 550，311 \& ${ }_{5}^{5399.7}$ \& $\underset{\substack{\text { S138．4 } \\ 518.4}}{ }$ \& | S117．4． |
| :--- |
| 51175 | \& 570.3

50.3 \& 50.0
50.0 \& 100．0\％ \& $\begin{array}{r}1,356,383 \\ { }_{32}, 968 \\ \hline\end{array}$ \& ［ $\begin{array}{r}15,395 \\ 10,152 \\ \hline\end{array}$ \& ${ }_{1.12}$ \& 100\％ \& 100\％

\hline Pit ${ }^{\text {Pit } 9999999.09 \%}$ \& \& | 99 | 56 |
| ---: | :--- |
| 10 | 56 | \& ［ 6 \& | 3.8 |
| :---: |
| 3 | \& 9.3 \& 0.7

0.7 \& $\begin{array}{r}15.5 \\ 15 \\ \hline\end{array}$ \& ${ }_{41.1}^{412}$ \& ${ }_{2}^{2.66}$ \& 180，668 \& （16，062．2 \& ¢52，322 \& \& ${ }_{\text {S138．6 }}^{\text {S1387 }}$ \& $\frac{5117.8}{51179}$ \& ¢ $\begin{array}{r}570.3 \\ 5003\end{array}$ \& ¢ \& \& ${ }_{\text {che }}^{56,511}$ \& ${ }_{\text {27，047 }}^{15137}$ \& － $\begin{aligned} & 3.42 \\ & 3.71\end{aligned}$ \& \& $\xrightarrow{\text { 100\％}}$

\hline \&

\hline
\end{tabular}

Run12－Sensitivity Case $+10 \%$ Processing Cost
GEDABEK－Run $12:+10 \%$ Processing Cost－Pit by Pit Graph

\ldots

.

ABBREVIATIONS UNITS AND GLOSSARY

Units

m	Metres
km	Kilometres
oz	Ounce
t	Metric Tonnes

Glossary	
Annual Report	A document published by public corporations on a yearly basis to provide shareholders, the public and the government with financial data, a summary of ownership and the accounting practices used to prepare the report.
Assumption	A Competent Person in general makes value judgements when making assumptions regarding information not fully supported by test work.
Australasian	Refers to Australia, New Zealand, Papua New Guinea and their off-shore territories.
Code of Ethics	Refers to the Code of Ethics of the relevant Professional Organisation or Recognised Professional organisations.
Competent Person	A minerals industry professional who is a member or fellow of The Australasian Institute of Mining and Metallurgy, or of the Australian Institute of Geoscientists, or of a Recognised Professional Organisation (RPO). A competent person must have a minimum of five years relevant experience in the style of mineralisation or type of deposit under consideration and in the activity which that person is undertaking.
Corporations Act	Refers to the Australian Corporations Act 2001.
Cut-off Grade	The lowest grade, or quality, of mineralised material that qualifies as economically mineable and available in a given deposit.
Experts	Refers to persons defined in the Corporations Act whose profession or reputation gives authority to a statement made by him or her in relation to a matter.
Exploration Target	A statement or estimate of the exploration potential of a mineral deposit in a defined geological setting where the statement or estimate, quoted as a range of tonnes and a range of grade (or quality), relates to mineralisation for which there has been insufficient exploration to estimate a Mineral Resource.
Exploration Results	Include data and information generated by mineral exploration programmes that might be of use to investors but which do not form part of a declaration of Mineral Resources or Ore Reserves.
Feasibility Study	A comprehensive technical and economic study of the selected development option for a mineral project that includes appropriately detailed assessments of applicable Modifying Factors together with any other relevant operational factors and detailed financial analysis that are necessary to demonstrate at the time of reporting that extraction is reasonably justified (economically mineable). The results of the study may reasonably serve as the basis for a final decision by a proponent or financial institution to proceed with, or finance, the development of the project. The confidence level of the study will be higher than that of a Pre-Feasibility Study.
Financial Reporting Standards	Refers to Australian statements of generally accepted accounting practice in the relevant jurisdiction in accordance with the Australian Accounting Standards Board (AASB) and the Corporations Act.
Grade	Any physical or chemical measurement of the characteristics of the material of interest in samples or product. Note that the term quality has special meaning for diamonds and other gemstones. The units of measurement should be stated when figures are reported.
Indicated Mineral Resource	Is that part of a Mineral Resource for which quantity, grade (or quality), densities, shape and physical characteristics are estimated. Estimations are made with sufficient confidence to allow the application of Modifying Factors in sufficient detail to support mine planning and evaluation of the economic viability of the deposit. Geological evidence is derived from adequately detailed and reliable exploration, sampling and testing gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes, and is sufficient to assume geological and grade (or quality) continuity between points of observation where data and samples are gathered. An Indicated Mineral Resource has a lower level of confidence than that applying to a Measured Mineral Resource and may only be converted to a Probable Ore Reserve.

Is that part of a Mineral Resource for which quantity and grade (or quality) are estimated on the basis of limited geological evidence and sampling. Geological evidence is sufficient to imply but not verify geological and grade continuity. It is based on exploration, sampling and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes. An Inferred Mineral Resource has a lower level of confidence than that applying to an Indicated Mineral Resource and must not be converted to an Ore Reserve. It is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration

Documents used in financing of projects detailing the project and financing arrangements.
The benefit of an asset to the owner or prospective owner for individual investment or operational objectives.
A design and costing study of an existing or proposed mining operation where all Modifying Factors have been considered in sufficient detail to demonstrate at the time of reporting that extraction is reasonably justified. Such a study should be inclusive of all development and mining activities proposed through to the effective closure of the existing or proposed mining operation.

Is that part of a Mineral Resource for which quantity, grade (or quality), densities, shape, and physical characteristics are estimated. Estimations are made with confidence sufficient to allow the application of Modifying Factors to support detailed mine planning and final evaluation of the economic viability of the deposit. Geological evidence is derived from detailed and reliable exploration, sampling and testing gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes, and is sufficient to confirm geological and grade continuity between points of observation where data and samples are gathered. A Measured Mineral Resource has a higher level of confidence than that applying to either an Indicated Mineral Resource or an Inferred Mineral Resource. It may be converted to a Proved Ore Reserve or under certain circumstances to a Probable Ore Reserve.

Metallurgy	Physical and/or chemical separation of constituents of interest from a larger mass of material. Employs methods to prepare a final marketable product from material as mined. Examples include screening, flotation, magnetic separation, leaching, washing, roasting, etc.
Mineable	Those parts of the mineralised body, both economic and uneconomic, that are extracted or to be extracted during the normal course of mining.

Mine Design

Mine Planning
Mineral
Mineralisation

Mineral Project	Any exploration, development or production activity, including a royalty or similar interest in these activities, in respect of minerals. Is a concentration or occurrence of solid material of economic interest in or on the earth's crust in such form, grade (or quality), and quantity that there are reasonable prospects for eventual economic extraction. The location, quantity, grade (or quality), continuity and other geological characteristics of a Mineral Resource are
known, estimated or interpreted from specific geological evidence and knowledge, including sampling. Mineral	
Resources are sub-divided, in order of increasing geological confidence, into Inferred, Indicated and Measured	
categories.	
Securities issued by a body corporate or an unincorporated body whose business includes exploration,	
development or extraction and processing of minerals.	

grade (or quality), and quantity that there are reasonab prospects for eventual economic extraction The location, quantity, grade (or quality), continuity and other geological characteristics of a Mineral Resource are known, estimated or interpreted from specific geological evidence and knowledge, including sampling. Mineral categories.
Securities issued by a body corporate or an unincorporated body whose business includes exploration,

All activities related to extraction of metals, minerals and gemstones from the earth whether surface or underground, and by any method (e.g. quarries, open cast, open cut, solution mining, dredging, etc.)

Considerations used to convert Mineral Resources to Ore Reserves. These include, but are not restricted to, governmental factors. studies at Pre-Feasibility or Feasibility level as appropriate that include application of Modifying Factors. configuration, in the case of an open pit, is established and an effective method of mineral processing is determined. It includes a financial analysis based on reasonable assumptions on the Modifying Factors and the dermin if all or phe R A Pre-Feasibility Study is at a lower confidence level than a Feasibility Study.

Is the economically mineable part of an Indicated, and in some circumstances, a Measured Mineral Resource. Proved Ore Reserve

A term generally regarded as broader than metallurgy and may apply to non-metallic materials where the term

A projection or forecast of the amount of minerals to be extracted from particular tenure for a period that extends past the current year and the forthcoming year

Proved Ore Reserve

Public Presentation

Public Reports

Quarterly Report

Recovery

Royalty or Royalty Interest
Scoping Study

Significant Project

Status
Tenure

Tonnage

Valuation

Vendor Consideration Opinion

A self-regulating body, such as one of engineers or geoscientists or of both, that: (a) admits members primarily on the basis of their academic qualifications and professional experience;
(b) requires compliance with professional standards of expertise and behaviour according to a Code of Ethics established by the organisation; and
(c) has enforceable disciplinary powers, including that of suspension or expulsion of a member, should its Code of Ethics be breached.
Is the economically mineable part of a Measured Mineral Resource. A Proved Ore Reserve implies a high degree of confidence in the Modifying Factors.

The process of presenting a topic or project to a public audience. It may include, but not be limited to, a demonstration, lecture or speech meant to inform, persuade or build good will.
Reports prepared for the purpose of informing investors or potential investors and their advisers on Exploration Results, Mineral Resources or Ore Reserves. They include, but are not limited to, annual and quarterly company reports, press releases, information memoranda, technical papers, website postings and public presentations. A document published by public corporations on a quarterly basis to provide shareholders, the public and the government with financial data, a summary of ownership and the accounting practices used to prepare the report.
The percentage of material of interest that is extracted during mining and/or processing. Recovery is a measure of mining or processing efficiency.
The amount of benefit accruing to the royalty owner from the royalty share of production.
A technical and economic study of the potential viability of Mineral Resources. It includes appropriate assessments of realistically assumed modifying factors together with any other relevant operational factors that are necessary to demonstrate at the time of reporting that progress to a Pre-Feasibility Study can be reasonably justified.

An exploration or mineral development project that has or could have a significant influence on the market value or operations of the listed company, and/or has specific prominence in Public Reports and announcements.

In relation to Tenure, means an assessment of the security of title to the Tenure.
Any form of title, right, licence, permit or lease granted by the responsible government in accordance with its mining legislation that confers on the holder certain rights to explore for and/or extract agreed minerals that may be (or is known to be) contained. Tenure can include third-party ownership of the Minerals (for example, a royalty stream). Tenure and Title have the same connotation as Tenement.

An expression of the amount of material of interest irrespective of the units of measurement (which should be stated when figures are reported).
The process of determining the monetary value of a mineral asset at a set valuation date
A Public Report involving a Valuation and expressing an opinion on the fairness of the consideration paid or benefit given to a vendor, promoter or provider of seed capital.

